Characterizations of groups generated by Kronecker sets
Journal de théorie des nombres de Bordeaux, Volume 19 (2007) no. 3, pp. 567-582.

In recent years, starting with the paper [B-D-S], we have investigated the possibility of characterizing countable subgroups of the torus T=R/Z by subsets of Z. Here we consider new types of subgroups: let KT be a Kronecker set (a compact set on which every continuous function f:KT can be uniformly approximated by characters of T), and G the group generated by K. We prove (Theorem 1) that G can be characterized by a subset of Z 2 (instead of a subset of Z). If K is finite, Theorem 1 implies our earlier result in [B-S]. We also prove (Theorem 2) that if K is uncountable, then G cannot be characterized by a subset of Z (or an integer sequence) in the sense of [B-D-S].

Ces dernières années, depuis l’article [B-D-S], nous avons étudié la possibilité de caratériser les sous-groupes dénombrables du tore T=R/Z par des sous-ensembles de Z. Nous considérons ici de nouveaux types de sous-groupes : soit KT un ensemble de Kronecker (un ensemble compact sur lequel toute fonction continue f:KT peut être approchée uniformément par des caractéres de T) et G le groupe engendré par K. Nous prouvons (théorème 1) que G peut être caractérisé par un sous-ensemble de Z 2 (au lieu d’un sous-ensemble de Z). Si K est fini, le théorème 1 implique notre résultat antérieur de [B-S]. Nous montrons également (théorème 2) que si K est dénombrable alors G ne peut pas être caractérisé par un sous-ensemble de Z (ou une suite d’entiers) au sens de [B-D-S].

DOI: 10.5802/jtnb.603
Biró, András 1

1 A. Rényi Institute of Mathematics Hungarian Academy of Sciences 1053 Budapest, Reáltanoda u. 13-15., Hungary
@article{JTNB_2007__19_3_567_0,
     author = {Bir\'o, Andr\'as},
     title = {Characterizations of groups generated by {Kronecker} sets},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {567--582},
     publisher = {Universit\'e Bordeaux 1},
     volume = {19},
     number = {3},
     year = {2007},
     doi = {10.5802/jtnb.603},
     zbl = {1159.11022},
     mrnumber = {2388789},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.603/}
}
TY  - JOUR
AU  - Biró, András
TI  - Characterizations of groups generated by Kronecker sets
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2007
SP  - 567
EP  - 582
VL  - 19
IS  - 3
PB  - Université Bordeaux 1
UR  - http://archive.numdam.org/articles/10.5802/jtnb.603/
DO  - 10.5802/jtnb.603
LA  - en
ID  - JTNB_2007__19_3_567_0
ER  - 
%0 Journal Article
%A Biró, András
%T Characterizations of groups generated by Kronecker sets
%J Journal de théorie des nombres de Bordeaux
%D 2007
%P 567-582
%V 19
%N 3
%I Université Bordeaux 1
%U http://archive.numdam.org/articles/10.5802/jtnb.603/
%R 10.5802/jtnb.603
%G en
%F JTNB_2007__19_3_567_0
Biró, András. Characterizations of groups generated by Kronecker sets. Journal de théorie des nombres de Bordeaux, Volume 19 (2007) no. 3, pp. 567-582. doi : 10.5802/jtnb.603. http://archive.numdam.org/articles/10.5802/jtnb.603/

[A-N] J. Aaronson, M. Nadkarni, L eigenvalues and L 2 spectra of no-singular transformations. Proc. London Math. Soc. (3) 55 (1987), 538–570. | MR | Zbl

[B] M. Beiglbock, Strong characterizing sequences of countable groups. Preprint, 2003 | MR

[Bi1] A. Biró, Characterizing sets for subgroups of compact groups I.: a special case. Preprint, 2004

[Bi2] A. Biró, Characterizing sets for subgroups of compact groups II.: the general case. Preprint, 2004

[B-D-S] A. Biró, J-M. Deshouillers, V.T. Sós, Good approximation and characterization of subgroups of R/Z. Studia Sci. Math. Hung. 38 (2001), 97–113. | MR | Zbl

[B-S] A. Biró, V.T. Sós, Strong characterizing sequences in simultaneous diophantine approximation. J. of Number Theory 99 (2003), 405–414. | MR | Zbl

[B-S-W] M. Beiglbock, C. Steineder, R. Winkler, Sequences and filters of characters characterizing subgroups of compact abelian groups. Preprint, 2004 | MR | Zbl

[D-K] D. Dikranjan, K. Kunen, Characterizing Subgroups of Compact Abelian Groups. Preprint 2004 | Zbl

[D-M-T] D. Dikranjan, C. Milan, A. Tonolo, A characterization of the maximally almost periodic Abelian groups. J. Pure Appl. Alg., to appear. | Zbl

[E] E. Effros, Transformation groups and C * -algebras. Ann. of Math. 81 (1965), 38–55. | MR | Zbl

[H-M-P] B. Host, J.-F. Mela, F. Parreau, Non singular transformations and spectral analysis of measures. Bull. Soc. Math. France 119 (1991), 33–90. | Numdam | MR | Zbl

[L-P] L. Lindahl, F. Poulsen, Thin sets in harmonic analysis. Marcel Dekker, 1971 | MR | Zbl

[N] M.G. Nadkarni, Spectral Theory of Dynamical Systems. Birkhauser, 1998 | MR | Zbl

[V] N.Th. Varopoulos, Groups of continuous functions in harmonic analysis. Acta Math. 125 (1970), 109–154. | MR | Zbl

Cited by Sources: