We provide a generalization of Scholz’s reciprocity law using the subfields and of , of degrees and over , respectively. The proof requires a particular choice of primitive element for over and is based upon the splitting of the cyclotomic polynomial over the subfields.
Nous donnons une généralisation de la loi de réciprocité de Scholz fondée sur les sous-corps et de de degrés et sur , respectivement. La démonstration utilise un choix particulier d’élément primitif pour sur et est basée sur la division du polynôme cyclotomique sur les sous-corps.
@article{JTNB_2007__19_3_583_0, author = {Budden, Mark and Eisenmenger, Jeremiah and Kish, Jonathan}, title = {A generalization of {Scholz{\textquoteright}s} reciprocity law}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {583--594}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {3}, year = {2007}, doi = {10.5802/jtnb.604}, zbl = {1209.11092}, mrnumber = {2388790}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.604/} }
TY - JOUR AU - Budden, Mark AU - Eisenmenger, Jeremiah AU - Kish, Jonathan TI - A generalization of Scholz’s reciprocity law JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 583 EP - 594 VL - 19 IS - 3 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.604/ DO - 10.5802/jtnb.604 LA - en ID - JTNB_2007__19_3_583_0 ER -
%0 Journal Article %A Budden, Mark %A Eisenmenger, Jeremiah %A Kish, Jonathan %T A generalization of Scholz’s reciprocity law %J Journal de théorie des nombres de Bordeaux %D 2007 %P 583-594 %V 19 %N 3 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.604/ %R 10.5802/jtnb.604 %G en %F JTNB_2007__19_3_583_0
Budden, Mark; Eisenmenger, Jeremiah; Kish, Jonathan. A generalization of Scholz’s reciprocity law. Journal de théorie des nombres de Bordeaux, Volume 19 (2007) no. 3, pp. 583-594. doi : 10.5802/jtnb.604. http://archive.numdam.org/articles/10.5802/jtnb.604/
[1] D. Buell and K. Williams, Is There an Octic Reciprocity Law of Scholz Type?. Amer. Math. Monthly 85 (1978), 483–484. | MR | Zbl
[2] D. Buell and K. Williams, An Octic Reciprocity Law of Scholz Type. Proc. Amer. Math. Soc. 77 (1979), 315–318. | MR | Zbl
[3] D. Estes and G. Pall, Spinor Genera of Binary Quadratic Forms. J. Number Theory 5 (1973), 421–432. | MR | Zbl
[4] R. Evans, Residuacity of Primes. Rocky Mountain J. of Math. 19 (1989), 1069–1081. | MR | Zbl
[5] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory. edition, Graduate Texts in Mathematics 84, Springer-Verlag, 1990. | MR | Zbl
[6] G. Janusz, Algebraic Number Fields. ed., Graduate Studies in Mathematics 7, American Mathematical Society, Providence, RI, 1996. | MR | Zbl
[7] E. Lehmer, On the Quadratic Character of some Quadratic Surds. J. Reine Angew. Math. 250 (1971), 42–48. | MR | Zbl
[8] E. Lehmer, Generalizations of Gauss’ Lemma. Number Theory and Algebra, Academic Press, New York, 1977, 187–194. | Zbl
[9] E. Lehmer, Rational Reciprocity Laws. Amer. Math. Monthly 85 (1978), 467–472. | MR | Zbl
[10] F. Lemmermeyer, Rational Quartic Reciprocity. Acta Arith. 67 (1994), 387–390. | MR | Zbl
[11] F. Lemmermeyer, Reciprocity Laws. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. | MR | Zbl
[12] A. Scholz, Über die Lösbarkeit der Gleichung . Math. Z. 39 (1934), 95–111.
[13] T. Schönemann, Theorie der Symmetrischen Functionen der Wurzeln einer Gleichung. Allgemeine Sätze über Congruenzen nebst einigen Anwendungen derselben. J. Reine Angew. Math. 19 (1839), 289–308. | Zbl
[14] K. Williams, On Scholz’s Reciprocity Law. Proc. Amer. Math. Soc. 64 No. 1 (1977), 45–46. | Zbl
[15] K. Williams, K. Hardy, and C. Friesen, On the Evaluation of the Legendre Symbol . Acta Arith. 45 (1985), 255–272. | MR | Zbl
Cited by Sources: