On multiple analogues of Ramanujan’s formulas for certain Dirichlet series
Journal de Théorie des Nombres de Bordeaux, Tome 20 (2008) no. 1, pp. 219-226.

Dans cet article, nous prouvons des analogues multiples des célèbres formules de Ramanujan pour certaines séries de Dirichlet, qui ont été présentées dans ses cahiers bien connus. De plus, nous obtenons des versions multiples de formules semblables à celles de Ramanujan qui ont été données par Berndt et d’autres auteurs.

In this paper, we prove multiple analogues of famous Ramanujan’s formulas for certain Dirichlet series which were introduced in his well-known notebooks. Furthermore, we prove some multiple versions of analogous formulas of Ramanujan which were given by Berndt and so on.

@article{JTNB_2008__20_1_219_0,
     author = {Tsumura, Hirofumi},
     title = {On multiple analogues of {Ramanujan{\textquoteright}s} formulas for certain {Dirichlet} series},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {219--226},
     publisher = {Universit\'e Bordeaux 1},
     volume = {20},
     number = {1},
     year = {2008},
     doi = {10.5802/jtnb.623},
     mrnumber = {2434165},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/jtnb.623/}
}
TY  - JOUR
AU  - Tsumura, Hirofumi
TI  - On multiple analogues of Ramanujan’s formulas for certain Dirichlet series
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2008
DA  - 2008///
SP  - 219
EP  - 226
VL  - 20
IS  - 1
PB  - Université Bordeaux 1
UR  - http://archive.numdam.org/articles/10.5802/jtnb.623/
UR  - https://www.ams.org/mathscinet-getitem?mr=2434165
UR  - https://doi.org/10.5802/jtnb.623
DO  - 10.5802/jtnb.623
LA  - en
ID  - JTNB_2008__20_1_219_0
ER  - 
Tsumura, Hirofumi. On multiple analogues of Ramanujan’s formulas for certain Dirichlet series. Journal de Théorie des Nombres de Bordeaux, Tome 20 (2008) no. 1, pp. 219-226. doi : 10.5802/jtnb.623. http://archive.numdam.org/articles/10.5802/jtnb.623/

[1] B. C. Berndt, Generalized Dedekind eta-functions and generalized Dedekind sums. Trans. Amer. Math. Soc. 178 (1973), 495–508. | MR 371817 | Zbl 0262.10015

[2] B. C. Berndt, Generalized Eisenstein series and modified Dedekind sums. J. Reine Angew. Math. 272 (1974), 182–193. | MR 360471 | Zbl 0294.10018

[3] B. C. Berndt, Modular transformations and generalizations of several formulae of Ramanujan. Rocky Mountain J. Math. 7 (1977), 147–189. | MR 429703 | Zbl 0365.10021

[4] B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan. J. Reine Angew Math. 303/304 (1978), 332–365. | MR 514690 | Zbl 0384.10011

[5] B. C. Berndt, Ramanujan’s Notebooks, part II. Springer-Verlag, New-York, 1989. | Zbl 0716.11001

[6] B. C. Berndt, Ramanujan’s Notebooks, part V. Springer-Verlag, New-York, 1998. | Zbl 0886.11001

[7] K. Dilcher, Zeros of Bernoulli, generalized Bernoulli and Euler polynomials. Memoirs of Amer. Math. Soc. 386 (1988). | MR 938890 | Zbl 0645.10015

[8] M. E. Hoffman, Multiple harmonic series. Pacific J. Math. 152 (1992), 275–290. | MR 1141796 | Zbl 0763.11037

[9] K. Katayama, On Ramanujan’s formula for values of Riemann zeta-function at positive odd integers. Acta Arith. 22 (1973), 149–155. | Zbl 0222.10040

[10] M. Lerch, Sur la fonction ζ(s) pour valeurs impaires de l’argument. J. Sci. Math. Astron. pub. pelo Dr. F. Gomes Teixeira, Coimbra 14 (1901), 65–69.

[11] S. L. Malurkar, On the application of Herr Mellin’s integrals to some series. J. Indian Math. Soc. 16 (1925/1926), 130–138.

[12] K. Matsumoto, H. Tsumura, A new method of producing functional relations among multiple zeta-functions. Quart. J. Math. 59 (2008), 55–83. | MR 2392501

[13] D. Zagier, Values of zeta functions and their applications. In “Proc. First Congress of Math., Paris”, vol. II, Progress in Math. 120, Birkhäuser, 1994, 497–512. | Zbl 0822.11001

Cité par Sources :