We show that if is an extremal even unimodular lattice of rank with , then is generated by its vectors of norms and . Our result is an extension of Ozeki’s result for the case .
Nous montrons que, si est un réseau unimodulaire pair extrémal de rang avec , alors est engendré par ses vecteurs de normes et . Notre résultat est une extension de celui d’Ozeki pour le cas .
@article{JTNB_2008__20_2_365_0, author = {Kominers, Scott Duke and Abel, Zachary}, title = {Configurations of rank-${40r}$ extremal even unimodular lattices (${r=1,2,3}$)}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {365--371}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {2}, year = {2008}, doi = {10.5802/jtnb.632}, mrnumber = {2477509}, zbl = {1185.11044}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.632/} }
TY - JOUR AU - Kominers, Scott Duke AU - Abel, Zachary TI - Configurations of rank-${40r}$ extremal even unimodular lattices (${r=1,2,3}$) JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 365 EP - 371 VL - 20 IS - 2 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.632/ DO - 10.5802/jtnb.632 LA - en ID - JTNB_2008__20_2_365_0 ER -
%0 Journal Article %A Kominers, Scott Duke %A Abel, Zachary %T Configurations of rank-${40r}$ extremal even unimodular lattices (${r=1,2,3}$) %J Journal de théorie des nombres de Bordeaux %D 2008 %P 365-371 %V 20 %N 2 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.632/ %R 10.5802/jtnb.632 %G en %F JTNB_2008__20_2_365_0
Kominers, Scott Duke; Abel, Zachary. Configurations of rank-${40r}$ extremal even unimodular lattices (${r=1,2,3}$). Journal de théorie des nombres de Bordeaux, Volume 20 (2008) no. 2, pp. 365-371. doi : 10.5802/jtnb.632. http://archive.numdam.org/articles/10.5802/jtnb.632/
[1] C. Bachoc, G. Nebe, B. Venkov, Odd unimodular lattices of minimum 4. Acta Arithmetica 101 (2002), 151–158. | MR | Zbl
[2] J. H. Conway, N. J. A. Sloane, Sphere Packing, Lattices and Groups (3rd edition). Springer-Verlag, New York, 1999. | MR | Zbl
[3] W. Ebeling, Lattices and Codes (2nd edition). Vieweg, Germany, 2002. | MR | Zbl
[4] N. D. Elkies, On the quotient of an extremal Type II lattice of rank , , or by the span of its minimal vectors. Preprint.
[5] S. D. Kominers, Configurations of extremal even unimodular lattices. To appear, Int. J. Num. Thy. (Preprint arXiv:0706.3082, 21 Jun 2007.)
[6] M. Ozeki, On even unimodular positive definite quadratic lattices of rank . Math. Z. 191 (1986), 283–291. | MR | Zbl
[7] M. Ozeki, On the structure of even unimodular extremal lattices of rank . Rocky Mtn. J. Math. 19 (1989), 847–862. | MR | Zbl
[8] M. Ozeki, On the configurations of even unimodular lattices of rank . Arch. Math. 46 (1986), 247–287. | MR | Zbl
[9] J.-P. Serre, A Course in Arithmetic. Springer-Verlag, New York, 1973. | MR | Zbl
Cited by Sources: