We establish automatic realizations of Galois groups among groups , where is a cyclic group of order for a prime and is a quotient of the group ring .
Nous établissons des réalisations automatiques de groupes de Galois parmi les groupes où est un groupe cyclique d’ordre , premier, et un groupe quotient de l’anneau .
@article{JTNB_2008__20_2_419_0, author = {Min\'a\v{c}, J\'an and Schultz, Andrew and Swallow, John}, title = {Automatic realizations of {Galois} groups with cyclic quotient of order ${p^n}$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {419--430}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {2}, year = {2008}, doi = {10.5802/jtnb.635}, mrnumber = {2477512}, zbl = {1180.12002}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.635/} }
TY - JOUR AU - Mináč, Ján AU - Schultz, Andrew AU - Swallow, John TI - Automatic realizations of Galois groups with cyclic quotient of order ${p^n}$ JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 419 EP - 430 VL - 20 IS - 2 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.635/ DO - 10.5802/jtnb.635 LA - en ID - JTNB_2008__20_2_419_0 ER -
%0 Journal Article %A Mináč, Ján %A Schultz, Andrew %A Swallow, John %T Automatic realizations of Galois groups with cyclic quotient of order ${p^n}$ %J Journal de théorie des nombres de Bordeaux %D 2008 %P 419-430 %V 20 %N 2 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.635/ %R 10.5802/jtnb.635 %G en %F JTNB_2008__20_2_419_0
Mináč, Ján; Schultz, Andrew; Swallow, John. Automatic realizations of Galois groups with cyclic quotient of order ${p^n}$. Journal de théorie des nombres de Bordeaux, Volume 20 (2008) no. 2, pp. 419-430. doi : 10.5802/jtnb.635. http://archive.numdam.org/articles/10.5802/jtnb.635/
[1] F. Anderson, K. Fuller, Rings and categories of modules. Graduate Texts in Mathematics 13. New York: Springer-Verlag, 1973. | MR | Zbl
[2] H. G. Grundman, T. L. Smith, Automatic realizability of Galois groups of order . Proc. Amer. Math. Soc. 124 (1996), no. 9, 2631–2640. | MR | Zbl
[3] H. G. Grundman, T. L. Smith, and J. R. Swallow, Groups of order as Galois groups. Exposition. Math. 13 (1995), 289–319. | MR | Zbl
[4] C. U. Jensen, On the representations of a group as a Galois group over an arbitrary field. Théorie des nombres (Quebec, PQ, 1987), 441–458. Berlin: de Gruyter, 1989. | MR | Zbl
[5] C. U. Jensen, Finite groups as Galois groups over arbitrary fields. Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), 435–448. Contemp. Math. 131, Part 2. Providence, RI: American Mathematical Society, 1992. | MR | Zbl
[6] C. U. Jensen, Elementary questions in Galois theory. Advances in algebra and model theory (Essen, 1994; Dresden, 1995), 11–24. Algebra Logic Appl. 9. Amsterdam: Gordon and Breach, 1997. | MR | Zbl
[7] C. U. Jensen, A. Ledet, N. Yui, Generic polynomials: constructive aspects of the inverse Galois problem. Mathematical Sciences Research Institute Publications 45. Cambridge: Cambridge University Press, 2002. | MR | Zbl
[8] T. Y. Lam, Lectures on modules and rings. Graduate Texts in Mathematics 189. New York: Springer-Verlag, 1999. | MR | Zbl
[9] A. Ledet, Brauer type embedding problems. Fields Institute Monographs 21. Providence, RI: American Mathematical Society, 2005. | MR | Zbl
[10] J. Mináč, J. Swallow, Galois module structure of th-power classes of extensions of degree . Israel J. Math. 138 (2003), 29–42. | MR | Zbl
[11] J. Mináč, J. Swallow, Galois embedding problems with cyclic quotient of order . Israel J. Math. 145 (2005), 93–112. | MR | Zbl
[12] J. Mináč, A. Schultz, J. Swallow, Galois module structure of the th-power classes of cyclic extensions of degree . Proc. London Math. Soc. 92 (2006), no. 2, 307–341. | MR
[13] D. Saltman, Generic Galois extensions and problems in field theory. Adv. in Math. 43 (1982), 250–283. | MR | Zbl
[14] D. Sharpe, P. Vámos, Injective modules. Cambridge Tracts in Mathematics and Mathematical Physics 62. London: Cambridge University Press, 1972. | MR | Zbl
[15] W. Waterhouse, The normal closures of certain Kummer extensions. Canad. Math. Bull. 37 (1994), no. 1, 133–139. | MR | Zbl
Cited by Sources: