Let be a central -curve over a polyquadratic field . In this article we give an upper bound for prime divisors of the order of the -rational torsion subgroup (see Theorems 1.1 and 1.2). The notion of central -curves is a generalization of that of elliptic curves over . Our result is a generalization of Theorem 2 of Mazur [12], and it is a precision of the upper bounds of Merel [15] and Oesterlé [17].
Soit une -courbe centrale sur un corps polyquadratique . Dans cet article, nous donnons une borne supérieure des diviseurs premiers de l’ordre du sous-groupe de torsion -rationnel (voir Théorèmes 1.1 et 1.2). La notion de -courbe centrale est une généralisation de celle de courbe elliptique sur . Notre résultat est une généralisation du Théorème de Mazur [12], et c’est une précision des bornes supérieures de Merel [15] et Oesterlé [17].
@article{JTNB_2008__20_2_465_0, author = {Sairaiji, Fumio and Yamauchi, Takuya}, title = {On rational torsion points of central $\mathbb{Q}$-curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {465--483}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {2}, year = {2008}, doi = {10.5802/jtnb.637}, zbl = {1171.11037}, mrnumber = {2477514}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.637/} }
TY - JOUR AU - Sairaiji, Fumio AU - Yamauchi, Takuya TI - On rational torsion points of central $\mathbb{Q}$-curves JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 465 EP - 483 VL - 20 IS - 2 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.637/ DO - 10.5802/jtnb.637 LA - en ID - JTNB_2008__20_2_465_0 ER -
%0 Journal Article %A Sairaiji, Fumio %A Yamauchi, Takuya %T On rational torsion points of central $\mathbb{Q}$-curves %J Journal de théorie des nombres de Bordeaux %D 2008 %P 465-483 %V 20 %N 2 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.637/ %R 10.5802/jtnb.637 %G en %F JTNB_2008__20_2_465_0
Sairaiji, Fumio; Yamauchi, Takuya. On rational torsion points of central $\mathbb{Q}$-curves. Journal de théorie des nombres de Bordeaux, Volume 20 (2008) no. 2, pp. 465-483. doi : 10.5802/jtnb.637. http://archive.numdam.org/articles/10.5802/jtnb.637/
[1] J. Cremona, Algorithms for modular elliptic curves. Cambridge: Cambridge University Press, 1992. | MR | Zbl
[2] P. Deligne, M. Rapoport, Schémas de modules de courbes elliptiques. Lecture Notes in Math. 349, Springer, Berlin-Heiderlberg-New York, 1973. | MR | Zbl
[3] N.D. Elkies, On elliptic -curves. In Modular curves and abelian varieties, Birkhäuser, 2004. | MR
[4] M. Furumoto, Y. Hasegawa, Hyperelliptic quotients of modular curves . Tokyo J. Math. 22 (1999), 105–125. | MR | Zbl
[5] A. Grothendieck, Groupes de monodromie en géometrie algébrique. In Séminaire de Géometrie Algébrique, Springer, 1972/3. | MR
[6] Y. Hasegawa, -curves over quadratic fields. Manuscripta Math. 94 (1997), 347–364. | MR | Zbl
[7] G. Karpilovsky, Group representations, Vol. 2. Elsevier, Amsterdam, 1993. | MR | Zbl
[8] S. Kamienny, On the torsion subgroups of elliptic curves over totally real field. Invent. Math. 83 (1986), 545–551. | MR | Zbl
[9] S. Kamienny, Torsion points on elliptic curves and -coefficients of modular forms. Invent. Math. 109 (1992), 221–229. | MR | Zbl
[10] M. Kenku, F. Momose, Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109 (1988), 125–149. | MR | Zbl
[11] D.S. Kubert, Universal bounds on the torsion of elliptic curves. Proc. London Math. Soc. 33 (1976), 193–237. | MR | Zbl
[12] B. Mazur, Rational points on modular curves. In Modular functions of one variable V, Springer, Berlin, 1977. | MR | Zbl
[13] B. Mazur, Modular curves and the Eisenstein ideal. Publ. Math. IHES 47 (1978), 33–186. | Numdam | MR | Zbl
[14] B. Mazur, Rational isogenies of prime degree. Invent Math. 44 (1978), 129–162. | MR | Zbl
[15] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), 437–449. | MR | Zbl
[16] K. Murty, The addition law on hyperelliptic Jacobians. Currents trends in number theory (Allahabad, 2000), 101–110, Hindustan Book Agency, New Delhi, 2002. | MR | Zbl
[17] J. Oesterlé, Torsion des courbes elliptiques sur les corps de nombres, preprint.
[18] P. Parent, Borne effectives pour la torsion des courbes elliptiques sur les corps de nombres. J. Reine Angew Math. 503 (1999), 129–160. | MR | Zbl
[19] E.E. Pyle, Abelian varieties over with large endomorphism algebras and their simple components over . In Modular curves and abelian varieties, Birkhäuser, 2004. | MR | Zbl
[20] J. Quer, -curves and abelian varieties of GL-type. Proc. London Math. Soc. 81 (2000), 285–317. | MR | Zbl
[21] M. Raynaud, Schémas en groupes de type . Bull. Soc Math. Fr. 102 (1974), 241–280. | Numdam | MR | Zbl
[22] K. Ribet, A modular construction of unramified -extension of . Invent. Math. 34 (1976), 151–162. | MR | Zbl
[23] J.-P. Serre, J. Tate, Good reduction of abelian varieties. Ann. Math. 88 (1968), 492–517. | MR | Zbl
[24] J. Tate, Algorithm for determining the type of a singular fibre in an elliptic pencil. In Modular Function of One Variable IV, Springer-Verlag, 1975. | MR
[25] T. Yamauchi, On -simple factors of Jacobian varieties of modular curves. Yokohama Math. J. 53 (2007), no. 2, 149–160. | MR | Zbl
[26] L.C. Washington, Introduction to cyclotomic fields. Springer-Verlag New-York, 1997. | MR | Zbl
Cited by Sources: