La liste complète des puissances pures qui apparaissent dans les suites de Fibonacci et de Lucas ne fut déterminée que tout récemment [10]. Les démonstrations combinent des techniques modulaires, issues de la preuve de Wiles du dernier théorème de Fermat, avec des méthodes classiques d’approximation diophantienne, dont la théorie de Baker. Dans le présent article, nous résolvons les équations diophantiennes , avec et , pour tous les nombres premiers , et en fait pour tous les nombres premiers à l’exception de d’entre eux. La stratégie suivie dans [10] s’avère inopérante en raison de la taille des bornes numériques données par les méthodes classiques et de la complexité des équations de Thue qui apparaissent dans notre étude. La nouveauté mise en avant dans le présent article est l’utilisation simultanée de deux courbes de Frey afin d’aboutir à des équations de Thue plus simples, et donc à de meilleures bornes numériques, qui contredisent les minorations que donne le crible modulaire.
The famous problem of determining all perfect powers in the Fibonacci sequence and in the Lucas sequence has recently been resolved [10]. The proofs of those results combine modular techniques from Wiles’ proof of Fermat’s Last Theorem with classical techniques from Baker’s theory and Diophantine approximation. In this paper, we solve the Diophantine equations , with and , for all primes and indeed for all but primes . Here the strategy of [10] is not sufficient due to the sizes of the bounds and complicated nature of the Thue equations involved. The novelty in the present paper is the use of the double-Frey approach to simplify the Thue equations and to cope with the large bounds obtained from Baker’s theory.
@article{JTNB_2008__20_3_555_0, author = {Bugeaud, Yann and Luca, Florian and Mignotte, Maurice and Siksek, Samir}, title = {Almost powers in the {Lucas} sequence}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {555--600}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {3}, year = {2008}, doi = {10.5802/jtnb.642}, mrnumber = {2523309}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.642/} }
TY - JOUR AU - Bugeaud, Yann AU - Luca, Florian AU - Mignotte, Maurice AU - Siksek, Samir TI - Almost powers in the Lucas sequence JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 555 EP - 600 VL - 20 IS - 3 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.642/ DO - 10.5802/jtnb.642 LA - en ID - JTNB_2008__20_3_555_0 ER -
%0 Journal Article %A Bugeaud, Yann %A Luca, Florian %A Mignotte, Maurice %A Siksek, Samir %T Almost powers in the Lucas sequence %J Journal de théorie des nombres de Bordeaux %D 2008 %P 555-600 %V 20 %N 3 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.642/ %R 10.5802/jtnb.642 %G en %F JTNB_2008__20_3_555_0
Bugeaud, Yann; Luca, Florian; Mignotte, Maurice; Siksek, Samir. Almost powers in the Lucas sequence. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 3, pp. 555-600. doi : 10.5802/jtnb.642. http://archive.numdam.org/articles/10.5802/jtnb.642/
[1] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, User’s guide to PARI-GP, version 2.3.2. (See also http://pari.math.u-bordeaux.fr/)
[2] M. A. Bennett, C. M. Skinner, Ternary Diophantine equations via Galois representations and modular forms. Canad. J. Math. 56 (2004), 23–54. | MR | Zbl
[3] Yu. Bilu, G. Hanrot, Solving Thue equations of high degree. J. Number Theory 60 (1996), 373–392. | MR | Zbl
[4] W. Bosma, J. Cannon, C. Playoust: The Magma Algebra System I: The User Language. J. Symb. Comp. 24 (1997), 235–265. (See also http://www.maths.usyd.edu.au:8000/u/magma/) | MR | Zbl
[5] Y. Bugeaud, K. Győry, Bounds for the solutions of unit equations. Acta Arith. 74 (1996), 67–80. | MR | Zbl
[6] Y. Bugeaud, K. Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations. Acta. Arith. 74 (1996), 273–292. | MR | Zbl
[7] Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Perfect Powers from Products of Terms in Lucas Sequences, J. reine angew. Math. 611 (2007), 109–129. | MR | Zbl
[8] Y. Bugeaud, M. Mignotte, Y. Roy, T. N. Shorey, The equation has no solutions with square, Math. Proc. Camb. Phil. Soc. 127 (1999), 353–372. | MR | Zbl
[9] Y. Bugeaud, M. Mignotte, S. Siksek, Sur les nombres de Fibonacci de la forme , C. R. Acad. Sci. Paris, Ser. I 339 (2004), 327–330. | MR | Zbl
[10] Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. 163 (2006), no. 3, 969–1018. | MR | Zbl
[11] Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell Equation. Compositio Mathematica 142 (2006), 31–62. | MR | Zbl
[12] Y. Bugeaud, M. Mignotte, S. Siksek, A multi-Frey approach to some multi-parameter families of Diophantine equations. Can. J. Math., 60 (2008), 491–519. | MR | Zbl
[13] H. Cohen, Number Theory II. Analytic and Modern Methods. GTM, Springer-Verlag, 2007.
[14] J. E. Cremona, Algorithms for modular elliptic curves, 2nd edition, Cambridge University Press, 1996. | MR | Zbl
[15] J. E. Cremona, Elliptic curve data, http://www.maths.nott.ac.uk/personal/jec/
[16] A. Dujella, A. Pethő, A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49(1998), 291–306. | MR | Zbl
[17] K. Győry, K. Yu, Bounds for the solutions of -unit equations and decomposable form equations. Acta Arith. 123 (2006), 9–41. | MR
[18] G. Hanrot, Solving Thue equations without the full unit group. Math. Comp. 69 (2000), 395–405. | MR | Zbl
[19] A. Kraus, Majorations effectives pour l’équation de Fermat généralisée. Can. J. Math. 49 (1997), 1139–1161. | MR | Zbl
[20] A. Kraus, J. Oesterlé, Sur une question de B. Mazur. Math. Ann. 293 (1992), 259–275. | MR | Zbl
[21] E. Landau, Verallgemeinerung eines Pólyaschen Satzes auf algebraische Zahlkörper. Nachr. Kgl. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1918), 478–488.
[22] M. Laurent, M. Mignotte, Y. Nesterenko, Formes linéares en deux logarithmes et déterminants d’interpolation. J. Number Theory 55 (1995), 255–265. | MR | Zbl
[23] H. W. Lenstra, Jr., Algorithms in algebraic number theory. Bull. Amer. Math. Soc. 26 (1992), 211–244. | MR | Zbl
[24] R. J. McIntosh, E. L. Roettger, A search for Fibonacci-Wiefrich and Wolstenholme primes. Math. Comp. 76 (2007), 2087–2094. | MR | Zbl
[25] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125–180. English transl. in Izv. Math. 64 (2000), 1217–1269. | MR | Zbl
[26] M. Mignotte, Entiers algébriques dont les conjugués sont proches du cercle unité. Séminaire Delange–Pisot–Poitou, 19e année: 1977/78, Théorie des nombres, Fasc. 2, Exp. No. 39, 6 pp., Secrétariat Math., Paris, 1978. | Numdam | MR | Zbl
[27] M. Mignotte, A kit on linear forms in three logarithms, http://www-irma.u-strasbg.fr/~bugeaud/travaux/kit.pdf
[28] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. Springer-Verlag, Berlin, 1990. | MR | Zbl
[29] I. Schur, Untersuchungen über algebraische Gleichungen. I: Bemerkungen zu einem Satz von E. Schmidt. Preuss. Akad. Sitzungsber. (1933), 403–428. | Zbl
[30] T. N. Shorey, R. Tijdeman, Exponential Diophantine equations. Cambridge Tracts in Mathematics 87, Cambridge University Press, Cambridge, 1986. | MR | Zbl
[31] C. L. Siegel, Abschätzung von Einheiten. Nachr. Akad. Wiss. Göttingen II, Math.-Phys. Kl., Nr. 9, (1969), 71–86. | MR | Zbl
[32] W. A. Stein, Modular Forms: A Computational Approach. American Mathematical Society, Graduate Studies in Mathematics 79, 2007. | MR | Zbl
[33] Z. H. Sun, Z. W. Sun, Fibonacci numbers and Fermat’s last theorem. Acta Arith. 60 (1992), 371–388. | MR | Zbl
[34] P. M. Voutier, An effective lower bound for the height of algebraic numbers. Acta Arith. 74 (1996), 81–95. | MR | Zbl
[35] D. D. Wall, Fibonacci series modulo . Amer. Math. Monthly 67 (1960), 525–532. | MR | Zbl
Cité par Sources :