Hawkins a défini une version probabiliste du crible d’Ératosthène et étudié la suite des nombres “premiers” aléatoires ainsi créés. Au moyen de diverses techniques probabilistes, de nombreux auteurs ont ensuite obtenu des résultats très fins sur ces “premiers”, souvent en accord avec des théorèmes ou conjectures classiques sur les nombres premiers usuels. Dans ce papier, on prouve que le nombre d’entiers tel que est presque sûrement équivalent à , pour tout entier fixé. C’est un cas particulier d’un travail récent de Bui and Keating (exprimé autrement) mais notre méthode est différente et fournit un terme d’erreur. On montre également que le nombre d’entiers tel que est presque sûrement équivalent à , pour tous entiers et fixés, ce qui peut être vu comme un analogue du théorème de Dirichlet.
Hawkins introduced a probabilistic version of Erathosthenes’ sieve and studied the associated sequence of random “primes” . Using various probabilistic techniques, many authors have obtained sharp results concerning these random “primes”, which are often in agreement with certain classical theorems or conjectures for prime numbers. In this paper, we prove that the number of integers such that is almost surely equivalent to , for a given fixed integer . This is a particular case of a recent result of Bui and Keating (differently formulated) but our method is different and enables us to provide an error term. We also prove that the number of integers such that is almost surely equivalent to , for given fixed integers and , which is an analogue of Dirichlet’s theorem.
@article{JTNB_2008__20_3_799_0, author = {Rivoal, Tanguy}, title = {On the distribution of {Hawkins{\textquoteright}~random} {\textquotedblleft}primes{\textquotedblright}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {799--809}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {3}, year = {2008}, doi = {10.5802/jtnb.651}, mrnumber = {2523318}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.651/} }
TY - JOUR AU - Rivoal, Tanguy TI - On the distribution of Hawkins’ random “primes” JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 799 EP - 809 VL - 20 IS - 3 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.651/ DO - 10.5802/jtnb.651 LA - en ID - JTNB_2008__20_3_799_0 ER -
Rivoal, Tanguy. On the distribution of Hawkins’ random “primes”. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 3, pp. 799-809. doi : 10.5802/jtnb.651. http://archive.numdam.org/articles/10.5802/jtnb.651/
[1] H. M. Bui, J. P. Keating, On twin primes associated with the Hawkins random sieve. J. Number Theory 119.2 (2006), 284–296. | MR | Zbl
[2] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 2 (1936), 23–46. | Zbl
[3] L. Dickson, A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math. 33 (1904), 155–161.
[4] G. H. Hardy, J. E. Littlewood, Some Problems of ’Partitio Numerorum.’ III. On the Expression of a Number as a Sum of Primes. Acta Math. 44 (1923), 1–70. | MR
[5] D. Hawkins, The random sieve. Math. Mag. 31 (1957/1958), 1–3. | MR | Zbl
[6] D. Hawkins, Random sieves. II. J. Number Theory 6 (1974), 192–200. | MR | Zbl
[7] C. C. Heyde, A loglog improvement to the Riemann hypothesis for the Hawkins random sieve. Ann. Probab. 6 (1978), no. 5, 870–875. | MR | Zbl
[8] C. C. Heyde, On asymptotic behavior for the Hawkins random sieve. Proc. AMS 56 (1976), 277–280. | MR | Zbl
[9] M. Loève, Probability theory, Third edition. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. | MR | Zbl
[10] J. D. Lorch, A generalized Hawkins sieve and prime -tuplets. Rocky Mountain J. Math. 37 (2007), no. 2, 533–550. | MR
[11] W. Neudecker, On twin “primes” and gaps between successive “primes” for the Hawkins random sieve. Math. Proc. Cambridge Philos. Soc. 77 (1975), 365–367. | MR | Zbl
[12] W. Neudecker, D. Williams, The ‘Riemann hypothesis’ for the Hawkins random sieve. Compositio Math. 29 (1974), 197–200. | Numdam | MR | Zbl
[13] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Deuxième édition. Cours Spécialisés, Société Mathématique de France, Paris, 1995. | MR | Zbl
[14] M. C. Wunderlich, A probabilistic setting for prime number theory. Acta Arith. 26 (1974), 59–81. | MR | Zbl
[15] M. C. Wunderlich, The prime number theorem for random sequences. J. Number Theory 8 (1976), no. 4, 369–371. | MR | Zbl
Cité par Sources :