Hawkins a défini une version probabiliste du crible d’Ératosthène et étudié la suite des nombres “premiers” aléatoires
Hawkins introduced a probabilistic version of Erathosthenes’ sieve and studied the associated sequence of random “primes”
@article{JTNB_2008__20_3_799_0, author = {Rivoal, Tanguy}, title = {On the distribution of {Hawkins{\textquoteright}~random} {\textquotedblleft}primes{\textquotedblright}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {799--809}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {3}, year = {2008}, doi = {10.5802/jtnb.651}, mrnumber = {2523318}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.651/} }
TY - JOUR AU - Rivoal, Tanguy TI - On the distribution of Hawkins’ random “primes” JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 799 EP - 809 VL - 20 IS - 3 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.651/ DO - 10.5802/jtnb.651 LA - en ID - JTNB_2008__20_3_799_0 ER -
Rivoal, Tanguy. On the distribution of Hawkins’ random “primes”. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 3, pp. 799-809. doi : 10.5802/jtnb.651. https://www.numdam.org/articles/10.5802/jtnb.651/
[1] H. M. Bui, J. P. Keating, On twin primes associated with the Hawkins random sieve. J. Number Theory 119.2 (2006), 284–296. | MR | Zbl
[2] H. Cramér, On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 2 (1936), 23–46. | Zbl
[3] L. Dickson, A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math. 33 (1904), 155–161.
[4] G. H. Hardy, J. E. Littlewood, Some Problems of ’Partitio Numerorum.’ III. On the Expression of a Number as a Sum of Primes. Acta Math. 44 (1923), 1–70. | MR
[5] D. Hawkins, The random sieve. Math. Mag. 31 (1957/1958), 1–3. | MR | Zbl
[6] D. Hawkins, Random sieves. II. J. Number Theory 6 (1974), 192–200. | MR | Zbl
[7] C. C. Heyde, A loglog improvement to the Riemann hypothesis for the Hawkins random sieve. Ann. Probab. 6 (1978), no. 5, 870–875. | MR | Zbl
[8] C. C. Heyde, On asymptotic behavior for the Hawkins random sieve. Proc. AMS 56 (1976), 277–280. | MR | Zbl
[9] M. Loève, Probability theory, Third edition. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. | MR | Zbl
[10] J. D. Lorch, A generalized Hawkins sieve and prime
[11] W. Neudecker, On twin “primes” and gaps between successive “primes” for the Hawkins random sieve. Math. Proc. Cambridge Philos. Soc. 77 (1975), 365–367. | MR | Zbl
[12] W. Neudecker, D. Williams, The ‘Riemann hypothesis’ for the Hawkins random sieve. Compositio Math. 29 (1974), 197–200. | Numdam | MR | Zbl
[13] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Deuxième édition. Cours Spécialisés, Société Mathématique de France, Paris, 1995. | MR | Zbl
[14] M. C. Wunderlich, A probabilistic setting for prime number theory. Acta Arith. 26 (1974), 59–81. | MR | Zbl
[15] M. C. Wunderlich, The prime number theorem for random sequences. J. Number Theory 8 (1976), no. 4, 369–371. | MR | Zbl
Cité par Sources :