Soit un sous-groupe
For a cocompact group
@article{JTNB_2009__21_3_721_0, author = {Petridis, Yiannis N. and Risager, Morten S.}, title = {Hyperbolic lattice-point counting and modular symbols}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {721--734}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {3}, year = {2009}, doi = {10.5802/jtnb.698}, zbl = {1214.11065}, mrnumber = {2605543}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.698/} }
TY - JOUR AU - Petridis, Yiannis N. AU - Risager, Morten S. TI - Hyperbolic lattice-point counting and modular symbols JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 721 EP - 734 VL - 21 IS - 3 PB - Université Bordeaux 1 UR - https://www.numdam.org/articles/10.5802/jtnb.698/ DO - 10.5802/jtnb.698 LA - en ID - JTNB_2009__21_3_721_0 ER -
%0 Journal Article %A Petridis, Yiannis N. %A Risager, Morten S. %T Hyperbolic lattice-point counting and modular symbols %J Journal de théorie des nombres de Bordeaux %D 2009 %P 721-734 %V 21 %N 3 %I Université Bordeaux 1 %U https://www.numdam.org/articles/10.5802/jtnb.698/ %R 10.5802/jtnb.698 %G en %F JTNB_2009__21_3_721_0
Petridis, Yiannis N.; Risager, Morten S. Hyperbolic lattice-point counting and modular symbols. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 721-734. doi : 10.5802/jtnb.698. https://www.numdam.org/articles/10.5802/jtnb.698/
[1] J. Bourgain, A. Gamburd, P. Sarnak, Sieving and expanders. C. R. Math. Acad. Sci. Paris 343 (2006), no. 3, 155–159. | MR
[2] F. Chamizo, Some applications of large sieve in Riemann surfaces. Acta Arith. 77 (1996), no. 4, 315–337. | MR | Zbl
[3] J. Delsarte, Sur le gitter fuchsien. C. R. Acad. Sci. Paris 214 (1942), 147–179. | MR
[4] D. Goldfeld, Zeta functions formed with modular symbols. Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), 111–121, Proc. Sympos. Pure Math., 66, Part 1, Ager. Math. Soc., Providence, RI, 1999. | MR | Zbl
[5] D. Goldfeld, The distribution of modular symbols. Number theory in progress, Vol. 2 (Zakopane-Kościelisko, 1997), 849–865, de Gruyter, Berlin, 1999. | MR | Zbl
[6] A. Good, Local analysis of Selberg’s trace formula. Lecture Notes in Mathematics, 1040. Springer-Verlag, Berlin, 1983. i+128 pp. | MR | Zbl
[7] D. Goldfeld, C. O’Sullivan, Estimating Additive Character Sums for Fuchsian Groups. The Ramanujan Journal 7 (1) (2003), 241–267. | MR | Zbl
[8] H. Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen I. Math. Ann. 138 (1959), 1–26; II. Math. Ann. 142 (1960/1961), 385–398; Nachtrag zu II, Math. Ann. 143 (1961), 463—464. | MR | Zbl
[9] H. Iwaniec, Spectral methods of automorphic forms. Second edition. Graduate Studies in Mathematics, 53. American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. xii+220 pp. | MR | Zbl
[10] A. Kontorovich, Ph.D thesis, Columbia University, 2007.
[11] P. Lax, R. S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean space. J. Funct. Anal. 46 (1982) 280–350. | MR | Zbl
[12] M. Loève, Probability theory I. Fourth edition, Springer, New York, 1977. | MR | Zbl
[13] S. J. Patterson, A lattice-point problem in hyperbolic space. Mathematika 22 (1975), no. 1, 81–88. | MR | Zbl
[14] Y. N. Petridis, M. S. Risager, Modular symbols have a normal distribution. Geom. Funct. Anal. 14 (2004), no. 5, 1013–1043. | MR | Zbl
[15] Y. N. Petridis, M. S. Risager, The distribution of values of the Poincaré pairing for hyperbolic Riemann surfaces. J. Reine Angew. Math., 579 (2005), 159–173. | MR | Zbl
[16] R. Phillips, Z. Rudnick, The circle problem in the hyperbolic plane. J. Funct. Anal. 121 (1994), no. 1, 78–116. | MR | Zbl
[17] R. Phillips, P. Sarnak, The spectrum of Fermat curves. Geom. Funct. Anal. 1 (1991), no. 1, 80–146. | MR | Zbl
[18] M. S. Risager, Distribution of modular symbols for compact surfaces. Internat. Math. Res. Notices. 2004, no. 41, 2125–2146. | MR | Zbl
Cité par Sources :