En supposant que l’hypothèse de Riemann généralisée (HRG) soit vérifiée, nous montrons que les corps de nombres galoisiens de degré qui sont euclidiens pour la norme sont précisément ceux dont le discriminant est l’un des entiers suivants :
Une grande partie de la preuve consiste à établir le résultat plus général suivant : soit K un corps de nombres galoisien de degré premier impair et de conducteur . Supposons que HRG soit vérifiée pour . Si
alors n’est pas euclidien pour la norme.
Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminant
A large part of the proof is in establishing the following more general result: Let be a Galois number field of odd prime degree and conductor . Assume the GRH for . If
then is not norm-Euclidean.
Mots clés : norm-Euclidean, Galois fields, cubic fields, GRH, Dirichlet characters
@article{JTNB_2012__24_2_425_0, author = {McGown, Kevin J.}, title = {Norm-Euclidean {Galois} fields and the {Generalized} {Riemann} {Hypothesis}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {425--445}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {24}, number = {2}, year = {2012}, doi = {10.5802/jtnb.804}, zbl = {1272.11005}, mrnumber = {2950700}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.804/} }
TY - JOUR AU - McGown, Kevin J. TI - Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis JO - Journal de théorie des nombres de Bordeaux PY - 2012 SP - 425 EP - 445 VL - 24 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.804/ DO - 10.5802/jtnb.804 LA - en ID - JTNB_2012__24_2_425_0 ER -
%0 Journal Article %A McGown, Kevin J. %T Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis %J Journal de théorie des nombres de Bordeaux %D 2012 %P 425-445 %V 24 %N 2 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.804/ %R 10.5802/jtnb.804 %G en %F JTNB_2012__24_2_425_0
McGown, Kevin J. Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis. Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 2, pp. 425-445. doi : 10.5802/jtnb.804. http://archive.numdam.org/articles/10.5802/jtnb.804/
[1] N. C. Ankeny, The least quadratic non residue. Ann. of Math. (2) 55 (1952), 65–72. | MR | Zbl
[2] E. Bach, Explicit bounds for primality testing and related problems. Math. Comp. 55 (1990), no. 191, 355–380. | MR | Zbl
[3] H. Davenport, Multiplicative number theory, third edition. Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000, Revised and with a preface by Hugh L. Montgomery. | MR | Zbl
[4] H. J. Godwin and J. R. Smith, On the Euclidean nature of four cyclic cubic fields. Math. Comp. 60 (1993), no. 201, 421–423. | MR | Zbl
[5] H. Heilbronn, On Euclid’s algorithm in cubic self-conjugate fields. Proc. Cambridge Philos. Soc. 46 (1950), 377–382. | MR | Zbl
[6] Y. Ihara, V. K. Murty, and M. Shimura, On the logarithmic derivatives of Dirichlet -functions at . Acta Arith. 137 (2009), no. 3, 253–276. | MR
[7] J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem. Algebraic number fields: -functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 409–464. | MR | Zbl
[8] E. Landau, Zur Theorie der Heckeschen Zetafunktionen, welche komplexen Charakteren entsprechen. Math. Z. 4 (1919), no. 1-2, 152–162. | MR
[9] F. Lemmermeyer, The Euclidean algorithm in algebraic number fields. Exposition. Math. 13 (1995), no. 5, 385–416. | MR | Zbl
[10] K. J. McGown, Norm-Euclidean cyclic fields of prime degree. Int. J. Number Theory (to appear). | MR
[11] H. L. Montgomery, Topics in multiplicative number theory. Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin, 1971. | MR | Zbl
[12] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, second edition. Springer-Verlag, Berlin, 1990. | MR | Zbl
[13] A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119–141. | Numdam | MR | Zbl
[14] G. Poitou, Minorations de discriminants (d’après A. M. Odlyzko). Séminaire Bourbaki, Vol. 1975/76 28ème année, Exp. No. 479, Springer, Berlin, 1977, pp. 136–153. Lecture Notes in Math., Vol. 567. | Numdam | MR | Zbl
[15] G. Poitou, Sur les petits discriminants. Séminaire Delange-Pisot-Poitou, 18e année: (1976/77), Théorie des nombres, Fasc. 1, Secrétariat Math., Paris, 1977, pp. Exp. No. 6, 18. | Numdam | MR | Zbl
[16] H. M. Stark, Some effective cases of the Brauer-Siegel theorem. Invent. Math. 23 (1974), 135–152. | MR | Zbl
[17] H. M. Stark, The analytic theory of algebraic numbers. Bull. Amer. Math. Soc. 81 (1975), no. 6, 961–972. | MR | Zbl
[18] A. Weil, Sur les “formules explicites” de la théorie des nombres premiers. Comm. Sém. Math. Univ. Lund (1952), 252–265. | MR | Zbl
[19] A. Weil, Sur les formules explicites de la théorie des nombres. Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 3–18. | MR | Zbl
Cité par Sources :