Soit
Let
@article{JTNB_2012__24_3_691_0, author = {Lemmermeyer, Franz}, title = {Binomial squares in pure cubic number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {691--704}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {24}, number = {3}, year = {2012}, doi = {10.5802/jtnb.817}, zbl = {1269.11108}, mrnumber = {3010635}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.817/} }
TY - JOUR AU - Lemmermeyer, Franz TI - Binomial squares in pure cubic number fields JO - Journal de théorie des nombres de Bordeaux PY - 2012 SP - 691 EP - 704 VL - 24 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.817/ DO - 10.5802/jtnb.817 LA - en ID - JTNB_2012__24_3_691_0 ER -
%0 Journal Article %A Lemmermeyer, Franz %T Binomial squares in pure cubic number fields %J Journal de théorie des nombres de Bordeaux %D 2012 %P 691-704 %V 24 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.817/ %R 10.5802/jtnb.817 %G en %F JTNB_2012__24_3_691_0
Lemmermeyer, Franz. Binomial squares in pure cubic number fields. Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 3, pp. 691-704. doi : 10.5802/jtnb.817. https://www.numdam.org/articles/10.5802/jtnb.817/
[1] P. Barrucand, H. Cohn, A rational genus, class number divisibility, and unit theory for pure cubic fields. J. Number Theory 2 (1970), 7–21. | MR | Zbl
[2] M. Bhargava, A. Shankar, Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves. ArXiv:1006.1002v2.
[3] G. Billing, Beiträge zur arithmetischen Theorie der ebenen kubischen Kurven vom Geschlecht Eins. Nova Acta Reg. Soc. Ups. (IV) 11 (1938). | Zbl
[4] H. Cohen, J. Martinet, Heuristics on class groups: some good primes are not too good. Math. Comp. 63 (1994), no. 207, 329–334. | MR | Zbl
[5] H. Cohn, A classical invitation to algebraic numbers and class fields. Springer-Verlag, 1978. | MR
[6] H. Eisenbeis, G. Frey, B. Ommerborn, Computation of the 2-rank of pure cubic fields. Math. Comp. 32 (1978), 559–569. | MR | Zbl
[7] L. Euler, Vollständige Anleitung zur Algebra (E387, E388). St. Petersburg, 1770.
[8] T. Honda, Pure cubic fields whose class numbers are multiples of three. J. Number Theory 3 (1971), 7–12. | MR | Zbl
[9] D. Husemöller, Elliptic Curves. 2nd ed., Springer-Verlag, 2004. | MR | Zbl
[10] J.-L. Lagrange, Sur la solution des problèmes indéterminés du second degré. Mem. Acad. Sci. Berlin, 1769.
[11] J.-L. Lagrange, Additions à l’analyse indéterminée. Lyon, 1774.
[12] F. Lemmermeyer, A note on Pépin’s counter examples to the Hasse principle for curves of genus
[13] F. Lemmermeyer, Why is the class number of
[14] T. Nagell, Solution complète de quelques équations cubiques à deux indéterminées. J. Math. Pures Appl. 4 (1925), 209–270. | EuDML | JFM | Numdam
[15] pari, available from http://pari.math.u-bordeaux.fr
[16] sage, available from http://sagemath.org
[17] P. Satgé, Un analogue du calcul de Heegner. Invent. Math. 87 (1987), 425–439. | EuDML | MR | Zbl
[18] J. Silverman, J. Tate, Rational Points on Elliptic Curves. Springer-Verlag, 1992. | MR | Zbl
Cité par Sources :