Il est connu que dans le cas des courbes hyperelliptiques la conjecture de Shafarevich peut être rendue effective, c’est à dire, pour tout corps de nombres
It is known that in the case of hyperelliptic curves the Shafarevich conjecture can be made effective, i.e., for any number field
@article{JTNB_2012__24_3_705_0, author = {Levin, Aaron}, title = {Siegel{\textquoteright}s theorem and the {Shafarevich} conjecture}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {705--727}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {24}, number = {3}, year = {2012}, doi = {10.5802/jtnb.818}, zbl = {1271.11065}, mrnumber = {3010636}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.818/} }
TY - JOUR AU - Levin, Aaron TI - Siegel’s theorem and the Shafarevich conjecture JO - Journal de théorie des nombres de Bordeaux PY - 2012 SP - 705 EP - 727 VL - 24 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.818/ DO - 10.5802/jtnb.818 LA - en ID - JTNB_2012__24_3_705_0 ER -
%0 Journal Article %A Levin, Aaron %T Siegel’s theorem and the Shafarevich conjecture %J Journal de théorie des nombres de Bordeaux %D 2012 %P 705-727 %V 24 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.818/ %R 10.5802/jtnb.818 %G en %F JTNB_2012__24_3_705_0
Levin, Aaron. Siegel’s theorem and the Shafarevich conjecture. Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 3, pp. 705-727. doi : 10.5802/jtnb.818. https://www.numdam.org/articles/10.5802/jtnb.818/
[1] A. Baker, Bounds for the solutions of the hyperelliptic equation. Proc. Cambridge Philos. Soc. 65 (1969), 439–444. | MR | Zbl
[2] A. Baker, Transcendental number theory. Second ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. | MR | Zbl
[3] A. Baker and J. Coates, Integer points on curves of genus 1. Proc. Cambridge Philos. Soc. 67 (1970), 595–602. | MR | Zbl
[4] Yu. Bilu (Belotserkovskiĭ), Effective analysis of a new class of Diophantine equations. Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk (1988), no. 6, 34–39, 125. | MR | Zbl
[5] Yu. Bilu, Effective analysis of integral points on algebraic curves. Israel J. Math. 90 (1995), no. 1-3, 235–252. | MR | Zbl
[6] Yu. Bilu, Quantitative Siegel’s theorem for Galois coverings. Compositio Math. 106 (1997), no. 2, 125–158. | MR | Zbl
[7] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. | MR | Zbl
[8] S. G. Dalaljan, The Prym variety of an unramified double covering of a hyperelliptic curve. Uspehi Mat. Nauk 29 (1974), no. 6(180), 165–166. | MR
[9] S. G. Dalaljan, The Prym variety of a two-sheeted covering of a hyperelliptic curve with two branch points. Mat. Sb. (N.S.) 98(140) (1975), no. 2 (10), 255–267, 334. | MR | Zbl
[10] R. Dvornicich and U. Zannier, Fields containing values of algebraic functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), no. 3, 421–443. | Numdam | MR | Zbl
[11] J.-H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant. Compositio Math. 79 (1991), no. 2, 169–204. | Numdam | MR | Zbl
[12] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73 (1983), no. 3, 349–366. | MR | Zbl
[13] D. Grant, Integer points on curves of genus two and their Jacobians. Trans. Amer. Math. Soc. 344 (1994), no. 1, 79–100. | MR | Zbl
[14] M. Hindry and J. H. Silverman, Diophantine geometry. Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000, An introduction. | MR | Zbl
[15] R. von Känel, An effective proof of the hyperelliptic Shafarevich conjecture and applications. PhD thesis, Eidgenössische Technische Hochschule Zürich, 2010.
[16] H. Kleiman, On the Diophantine equation
[17] Q. Liu, Modèles minimaux des courbes de genre deux. J. Reine Angew. Math. 453 (1994), 137–164. | MR | Zbl
[18] Q. Liu, Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète. Trans. Amer. Math. Soc. 348 (1996), no. 11, 4577–4610. | MR | Zbl
[19] J. R. Merriman, Binary forms and the reduction of curves. 1970, D.Phil, thesis, Oxford University.
[20] J. R. Merriman and N. P. Smart, Curves of genus
[21] D. Mumford, Prym varieties. I. Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 325–350. | MR | Zbl
[22] A. P. Ogg, On pencils of curves of genus two. Topology 5 (1966), 355–362. | MR | Zbl
[23] F. Oort, Hyperelliptic curves over number fields. Classification of algebraic varieties and compact complex manifolds, Springer, Berlin, 1974, pp. 211–218. Lecture Notes in Math., Vol. 412. | MR | Zbl
[24] A. N. Parshin, Minimal models of curves of genus
[25] B. Poonen, Computational aspects of curves of genus at least
[26] D. Poulakis, Points entiers et modèles des courbes algébriques. Monatsh. Math. 118 (1994), no. 1-2, 111–143. | MR | Zbl
[27] G. Rémond, Hauteurs thêta et construction de Kodaira. J. Number Theory 78 (1999), no. 2, 287–311. | MR | Zbl
[28] J.-P. Serre and J. Tate, Good reduction of abelian varieties. Ann. of Math. (2) 88 (1968), 492–517. | MR | Zbl
[29] I. R. Shafarevich, Algebraic number fields. Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 163–176. | MR | Zbl
[30] C.L. Siegel, Über einege Anwendungen Diophantischer Approximationen. Abh. Preuss. Akad. Wiss. Phys. Math. Kl. (1929), 41–69.
[31] J. H. Silverman, Integral points on abelian varieties. Invent. Math. 81 (1985), no. 2, 341–346. | MR | Zbl
[32] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves. Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. | MR | Zbl
[33] N. P. Smart,
[34] U. Zannier, Roth’s theorem, integral points and certain ramified covers of
Cité par Sources :