Let be any integer and fix an odd prime . Let denote the -fold composition of the Chebyshev polynomial of degree shifted by . If this polynomial is irreducible, let , where is a root of . We use a theorem of Dedekind in conjunction with previous results of the author to give conditions on that ensure is monogenic. For other values of , we apply a result of Guàrdia, Montes, and Nart to obtain a formula for the discriminant of and compute an integral basis for the ring of integers .
Soit un nombre entier et un nombre premier. Soit la composition -fois du polynôme de Tchebychev de degré décalée de . Supposant que ce polynôme est irréductible, soit , où est une racine de . Nous appliquons un théorème de Dedekind en conjonction avec des résultats antérieurs de l’auteur afin d’obtenir des conditions sur qui assurent que soit monogène. Pour d’autres valeurs de , nous appliquons un théorème de Guàrdia, Montes, et Nart pour obtenir une formule pour le discriminant de et calculons une base intègrale de l’anneau des entiers .
@article{JTNB_2014__26_3_607_0, author = {Gassert, T. Alden}, title = {Discriminants of {Chebyshev} radical extensions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {607--633}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {3}, year = {2014}, doi = {10.5802/jtnb.882}, mrnumber = {3320495}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.882/} }
TY - JOUR AU - Gassert, T. Alden TI - Discriminants of Chebyshev radical extensions JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 607 EP - 633 VL - 26 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://archive.numdam.org/articles/10.5802/jtnb.882/ DO - 10.5802/jtnb.882 LA - en ID - JTNB_2014__26_3_607_0 ER -
%0 Journal Article %A Gassert, T. Alden %T Discriminants of Chebyshev radical extensions %J Journal de théorie des nombres de Bordeaux %D 2014 %P 607-633 %V 26 %N 3 %I Société Arithmétique de Bordeaux %U http://archive.numdam.org/articles/10.5802/jtnb.882/ %R 10.5802/jtnb.882 %G en %F JTNB_2014__26_3_607_0
Gassert, T. Alden. Discriminants of Chebyshev radical extensions. Journal de théorie des nombres de Bordeaux, Volume 26 (2014) no. 3, pp. 607-633. doi : 10.5802/jtnb.882. http://archive.numdam.org/articles/10.5802/jtnb.882/
[1] W. Aitken, F. Hajir, and C. Maire, Finitely ramified iterated extensions Int. Math. Res. Not., 14, (2005), 855–880. | MR | Zbl
[2] A. Ash, J. Brakenhoff, and T. Zarrabi, Equality of polynomial and field discriminants, Experiment. Math., 16, (2007), 3, 367–374. | MR | Zbl
[3] L. Bartholdi, R. Grigorchuk, and V. Nekrashevych, From fractal groups to fractal sets, In Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, (2003), 25–118. | MR | Zbl
[4] H. Cohen, A course in computational algebraic number theory of Graduate Texts in Mathematics, 138, Springer-Verlag, Berlin, (1993). | MR | Zbl
[5] L. E. Fadil, J. Montes, and E. Nart, Newton polygons and p-integral bases, (2009), arxiv.org/pdf/0906.2629.
[6] I. Gaál, Diophantine equations and power integral bases, Birkhäuser Boston Inc., Boston, MA, (2002), New computational methods. | MR | Zbl
[7] T. A. Gassert, Chebyshev action on finite fields, Disc. Math., (2014), 315–316:83–94. | MR | Zbl
[8] M.-N. Gras, Algorithmes numériques relatifs aux corps cubiques cycliques, in Séminaire Delange-Pisot-Poitou, 14e année, (1972/72), No. 2, Exp. No. G15, page 2. Secrétariat Mathématique, Paris, (1973). | Numdam | MR | Zbl
[9] J. Guàrdia, J. Montes, and E. Nart, Higher newton polygons and integral bases, (2009), arxiv.org/pdf/0902.3428. | MR
[10] J. Guàrdia, J. Montes, and E. Nart, Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields J. Théor. Nombres Bordeaux, 23, (2011), 3, 667–696. | Numdam | MR | Zbl
[11] J. Guàrdia, J. Montes, and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc., 364, (2012), 1, 361–416. | MR | Zbl
[12] S.-I. Ih, A nondensity property of preperiodic points on Chebyshev dynamical systems, J. Number Theory, 131,(2011), 4, 750–780. | MR | Zbl
[13] S.-I. Ih and T. J. Tucker, A finiteness property for preperiodic points of Chebyshev polynomials, Int. J. Number Theory, 6, (2010), 5, 1011–1025. | MR | Zbl
[14] E. Kummer, Über die ergänzungssätze zu den allgemeinen reziprokcitäusgesetzten, Journal für die reine und angewandte Mathematik, 44, (1852), 93–146. | Zbl
[15] J. Liang, On the integral basis of the maximal real subfield of a cyclotomic field, J. Reine Angew. Math., 286/287, (1976), 223–226. | MR | Zbl
[16] R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications 20, Cambridge University Press, Cambridge, second edition, (1997), with a foreword by P. M. Cohn. | MR | Zbl
[17] E. Lucas, Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier, Bull. Soc. Math. France, 6, (1878), 49–54. | MR
[18] T. Nakahara, On the indices and integral bases of noncyclic but abelian biquadratic fields, Arch. Math. (Basel), 41, (1983), 6, 504–508. | MR | Zbl
[19] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, Springer Monographs in Mathematics, Springer-Verlag, Berlin, third edition, (2004). | MR | Zbl
[20] T. J. Rivlin, Chebyshev polynomials, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, second edition, (1990). From approximation theory to algebra and number theory. | MR | Zbl
[21] S. I. A. Shah, Monogenesis of the rings of integers in a cyclic sextic field of a prime conductor, Rep. Fac. Sci. Engrg. Saga Univ. Math., 29, (2000), 9. | MR | Zbl
[22] J. H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, New York, (2007). | MR | Zbl
Cited by Sources: