Local rigidity for hyperbolic toral automorphisms
Mathematics Research Reports, Tome 3 (2022), pp. 57-68.

We consider a hyperbolic toral automorphism L and its C 1 -small perturbation f. It is well-known that f is Anosov and topologically conjugate to L, but a conjugacy H is only Hölder continuous in general. We discuss conditions for smoothness of H, such as conjugacy of the periodic data of f and L, coincidence of their Lyapunov exponents, and weaker regularity of H, and  we summarize questions, results, and techniques in this area. Then we introduce our new results: if H is weakly differentiable then it is C 1+Hölder , and if L is also weakly irreducible then H is C .

Reçu le :
Révisé le :
Publié le :
DOI : 10.5802/mrr.13
Classification : 37D20, 37C15
Mots clés : hyperbolic toral automorphism, conjugacy, local rigidity, linear cocycle
Kalinin, Boris 1 ; Sadovskaya, Victoria 1 ; Wang, Zhenqi Jenny 2

1 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA
2 Department of Mathematics, Michigan State University, East Lansing, MI 48824,USA
@article{MRR_2022__3__57_0,
     author = {Kalinin, Boris and Sadovskaya, Victoria and Wang, Zhenqi Jenny},
     title = {Local rigidity for hyperbolic toral automorphisms},
     journal = {Mathematics Research Reports},
     pages = {57--68},
     publisher = {MathOA foundation},
     volume = {3},
     year = {2022},
     doi = {10.5802/mrr.13},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/mrr.13/}
}
TY  - JOUR
AU  - Kalinin, Boris
AU  - Sadovskaya, Victoria
AU  - Wang, Zhenqi Jenny
TI  - Local rigidity for hyperbolic toral automorphisms
JO  - Mathematics Research Reports
PY  - 2022
SP  - 57
EP  - 68
VL  - 3
PB  - MathOA foundation
UR  - http://archive.numdam.org/articles/10.5802/mrr.13/
DO  - 10.5802/mrr.13
LA  - en
ID  - MRR_2022__3__57_0
ER  - 
%0 Journal Article
%A Kalinin, Boris
%A Sadovskaya, Victoria
%A Wang, Zhenqi Jenny
%T Local rigidity for hyperbolic toral automorphisms
%J Mathematics Research Reports
%D 2022
%P 57-68
%V 3
%I MathOA foundation
%U http://archive.numdam.org/articles/10.5802/mrr.13/
%R 10.5802/mrr.13
%G en
%F MRR_2022__3__57_0
Kalinin, Boris; Sadovskaya, Victoria; Wang, Zhenqi Jenny. Local rigidity for hyperbolic toral automorphisms. Mathematics Research Reports, Tome 3 (2022), pp. 57-68. doi : 10.5802/mrr.13. http://archive.numdam.org/articles/10.5802/mrr.13/

[1] Anosov, D. V. Geodesic flows on closed Riemann manifolds with negative curvature, Proceedings of the Steklov Institute of Mathematics, no. 90, American Mathematical Society, Providence, RI, 1969

[2] Butler, C. Measurable rigidity of the cohomological equation for linear cocycles over hyperbolic systems, Israel Journal of Mathematics, Volume 227 (2018) no. 1, pp. 27-61 | DOI | MR | Zbl

[3] Damjanović, D.; Katok, A. Local rigidity of partially hyperbolic actions. I. KAM method and k actions on the torus, Annals of Mathematics, Volume 172 (2010), pp. 1805-1858 | DOI | MR | Zbl

[4] de la Llave, R. Invariants for smooth conjugacy of hyperbolic dynamical systems II, Comm. Math. Phys., Volume 109 (1987), pp. 368-378 | DOI | MR | Zbl

[5] de la Llave, R. Smooth conjugacy and SRB measures for uniformly and non-uniformly hyperbolic systems, Comm. Math. Phys., Volume 150 (1992), pp. 289-320 | DOI | Zbl

[6] de la Llave, R. Rigidity of higher-dimensional conformal Anosov systems, Ergodic Theory Dynam. Systems, Volume 22 (2002) no. 6, pp. 1845-1870 | DOI | MR | Zbl

[7] de la Llave, R. Further rigidity properties of conformal Anosov systems, Ergodic Theory Dynam. Systems, Volume 24 (2004) no. 5, pp. 1425-1441 | DOI | MR | Zbl

[8] de la Llave, R.; Moriyón, R. Invariants for smooth conjugacy of hyperbolic dynamical systems IV, Comm. Math. Phys., Volume 116 (1988), pp. 185-192 | DOI | MR | Zbl

[9] DeWitt, J. Local Lyapunov spectrum rigidity of nilmanifold automorphisms, J. Modern Dynamics, Volume 17 (2021), pp. 65-109 | DOI | MR | Zbl

[10] Gogolev, A. Smooth conjugacy of Anosov diffeomorphisms on higher dimensional tori, J. Modern Dynamics, Volume 2 (2008) no. 4, pp. 645-700 | DOI | MR | Zbl

[11] Gogolev, A. Bootstrap for local rigidity of Anosov automorphisms of the 3-torus, Comm. Math. Phys., Volume 352 (2017) no. 2, pp. 439-455 | DOI | MR | Zbl

[12] Gogolev, A.; Guysinski, M. C 1 -differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus, DCDS-A, Volume 22 (2008) no. 1/2, pp. 183-200 | MR

[13] Gogolev, A.; Kalinin, B.; Sadovskaya, V. Local rigidity for Anosov automorphisms, Math. Research Letters, Volume 18 (2011) no. 5, pp. 843-858 | DOI | MR | Zbl

[14] Gogolev, A.; Kalinin, B.; Sadovskaya, V. Local rigidity of Lyapunov spectrum for toral automorphisms, Israel J. Math., Volume 238 (2020), pp. 389-403 | DOI | MR | Zbl

[15] Gogolev, A.; Rodriguez Hertz, F. Smooth rigidity for very non-algebraic Anosov diffeomorphisms of codimension one, Preprint

[16] Journé, J.-L. A regularity lemma for functions of several variables, Revista Matemática Iberoamericana, Volume 4 (1988) no. 2, pp. 187-193 | DOI | MR | Zbl

[17] Kalinin, B. Livšic theorem for matrix cocycles, Annals of Mathematics, Volume 173 (2011) no. 2, pp. 1025-1042 | DOI | MR | Zbl

[18] Kalinin, B.; Sadovskaya, V. On local and global rigidity of quasiconformal Anosov diffeomorphisms, J. Institute of Mathematics of Jussieu, Volume 2 (2003) no. 4, pp. 567-582 | DOI | Zbl

[19] Kalinin, B.; Sadovskaya, V. On Anosov diffeomorphisms with asymptotically conformal periodic data, Ergodic Theory Dynam. Systems, Volume 29 (2009), pp. 117-136 | DOI | MR | Zbl

[20] Kalinin, B.; Sadovskaya, V. Linear cocycles over hyperbolic systems and criteria of conformality, J. Modern Dynamics, Volume 4 (2010) no. 3, pp. 419-441 | DOI | MR | Zbl

[21] Kalinin, B.; Sadovskaya, V. Cocycles with one exponent over partially hyperbolic systems, Geometriae Dedicata, Volume 167 (2013) no. 1, pp. 167-188 | DOI | MR | Zbl

[22] Kalinin, B.; Sadovskaya, V.; Wang, Z. Smooth local rigidity for hyperbolic toral automorphisms, Preprint

[23] Ledrappier, F. Propriétés ergodiques des mesures de Sinaï, Inst. Hautes Etudes Sci. Publ. Math., Volume 59 (1984), pp. 163-188 | DOI | Numdam | Zbl

[24] Livšic, A. N. Cohomology of dynamical systems, Math. USSR Izvestija, Volume 6 (1972), pp. 1278-1301 | DOI | MR

[25] Parry, W. The Livšic periodic point theorem for non-Abelian cocycles, Ergodic Theory Dynam. Systems, Volume 19 (1999) no. 3, pp. 687-701 | DOI | MR | Zbl

[26] Parry, W.; Pollicott, M. The Livšic cocycle equation for compact Lie group extensions of hyperbolic systems, J. London Math. Soc., Volume 56 (1997) no. 2, pp. 405-416 | DOI | Zbl

[27] Pesin, Ya. Lectures on partial hyperbolicity and stable ergodicity, EMS, Zurich, 2004 | DOI

[28] Pollicott, M.; Walkden, C. P. Livšic theorems for connected Lie groups, Trans. Amer. Math. Soc., Volume 353 (2001) no. 7, pp. 2879-2895 | DOI | Zbl

[29] Sadovskaya, V. On uniformly quasiconformal Anosov system, Math. Research Letters, Volume 12 (2005) no. 3, pp. 425-441 | DOI | MR | Zbl

[30] Sadovskaya, V. Cohomology of GL(2,)-valued cocycles over hyperbolic systems, DCDS-A, Volume 33 (2013) no. 5, pp. 2085-2104 | DOI | MR

[31] Sadovskaya, V. Cohomology of fiber bunched cocycles over hyperbolic systems, Ergodic Theory Dynam. Systems, Volume 35 (2015) no. 8, pp. 2669-2688 | DOI | MR | Zbl

[32] Saghin, R.; Yang, J. Lyapunov exponents and rigidity of Anosov automorphisms and skew products, Advances in Math., Volume 355 (2019), p. 106764 | DOI | MR | Zbl

[33] Schmidt, K. Remarks on Livšic theory for non-Abelian cocycles, Ergodic Theory Dynam. Systems, Volume 19 (1999) no. 3, pp. 703-721 | DOI | Zbl

[34] Walters, P. Conjugacy properties of affine transformations of nilmanifolds, Math. Systems Theory, Volume 4 (1970), pp. 327-333 | DOI | MR | Zbl

[35] Wang, Z.; Sun, W. Lyapunov exponents of hyperbolic measures and hyperbolic periodic orbits, Trans. Amer. Math. Soc., Volume 362 (2010), pp. 4267-4282 | DOI | MR | Zbl

Cité par Sources :