Denominators of Igusa class polynomials
Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 2 (2014), pp. 5-29.

Dénominateurs des polynômes des classes d’Igusa.

Cet article donne une démonstration directe de la formule explicite du nombre d’intersection CM(K).G 1 sur l’espace des modules de Siegel pour un corps K à multiplication complexe quartique. Cette formule permet de calculer, d’une manière effective, les dénominateurs des polynômes des classes d’Igusa ce qui est utile pour construire des courbes de genre 2 pour la cryptographie. Cette formule a été démontrée dans l’article [22], avec une forte dépendance, dans la démonstration, d’une formule donnée dans [21] qui généralise la formule de Gross et Zagier. Notre présentation ici est plus transparente et plus adaptée pour écrire un algorithme pour la calculer. Nous donnons aussi des exemples et des applications.

In [22], the authors proved an explicit formula for the arithmetic intersection number CM(K).G 1 on the Siegel moduli space of abelian surfaces, under some assumptions on the quartic CM field K. These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus 2 curves for use in cryptography. One of the main tools in the proof was a previous result of the authors [21] generalizing the singular moduli formula of Gross and Zagier. The current paper combines the arguments of [21, 22] and presents a direct proof of the main arithmetic intersection formula. We focus on providing a stream-lined account of the proof such that the algorithm for implementation is clear, and we give applications and examples of the formula in corner cases.

Reçu le :
Publié le :
DOI : 10.5802/pmb.6
Classification : 11Y99, 11G15, 14K22, 14G50
Mots clés : Gross-Zagier’s formula, intersection number, complex multiplication, Igusa class polynomials
Lauter, Kristin 1 ; Viray, Bianca 2

1 Microsoft Research, 1 Microsoft Way, Redmond, WA 98062, USA
2 Department of Mathematics, Box 1917, Brown University, Providence, RI 02912, USA
@article{PMB_2014___2_5_0,
     author = {Lauter, Kristin and Viray, Bianca},
     title = {Denominators of {Igusa} class polynomials},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {5--29},
     publisher = {Presses universitaires de Franche-Comt\'e},
     number = {2},
     year = {2014},
     doi = {10.5802/pmb.6},
     zbl = {1365.11074},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/pmb.6/}
}
TY  - JOUR
AU  - Lauter, Kristin
AU  - Viray, Bianca
TI  - Denominators of Igusa class polynomials
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2014
SP  - 5
EP  - 29
IS  - 2
PB  - Presses universitaires de Franche-Comté
UR  - http://archive.numdam.org/articles/10.5802/pmb.6/
DO  - 10.5802/pmb.6
LA  - en
ID  - PMB_2014___2_5_0
ER  - 
%0 Journal Article
%A Lauter, Kristin
%A Viray, Bianca
%T Denominators of Igusa class polynomials
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2014
%P 5-29
%N 2
%I Presses universitaires de Franche-Comté
%U http://archive.numdam.org/articles/10.5802/pmb.6/
%R 10.5802/pmb.6
%G en
%F PMB_2014___2_5_0
Lauter, Kristin; Viray, Bianca. Denominators of Igusa class polynomials. Publications mathématiques de Besançon. Algèbre et théorie des nombres, no. 2 (2014), pp. 5-29. doi : 10.5802/pmb.6. http://archive.numdam.org/articles/10.5802/pmb.6/

[1] Bruinier, J. H, Yang, T., CM-values of Hilbert modular functions. Invent. Math., 163, no. 2, (2006), 229–288. | DOI | MR | Zbl

[2] Cassels, J.W.S, Fröhlich, A., Algebraic number theory. Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union., Academic Press, London, (1967), xviii+366.

[3] Costello, C., Deines-Schartz, A., Lauter, K., Yang, T., Constructing abelian surfaces for cryptography via Rosenhain invariants. LMS J. Comput. Math., 17 (Special issue A), (2014), 157–180. | DOI | MR | Zbl

[4] Cox, D. A., Primes of the form x 2 +ny 2 , A Wiley-Interscience Publication, Fermat, class field theory and complex multiplication, John Wiley & Sons Inc., New York, (1989), xiv+351. | DOI

[5] Dorman, D. R., Global orders in definite quaternion algebras as endomorphism rings for reduced CM elliptic curves, Conférence Théorie des nombres, Quebec, PQ, (1987), de Gruyter, Berlin, (1989), 108–116. | DOI

[6] Dorman, D. R., Special values of the elliptic modular function and factorization formulae, J. Reine Angew. Math., 383, (1988), 207–220. | DOI | MR | Zbl

[7] Eisenträger, Kirsten, Lauter, K., A CRT algorithm for constructing genus 2 curves over finite fields, Proceedings of Arithmetic, Geometry, and Coding Theory, (AGCT-10), Marseille, Numéro 21, Société Mathématique de France, (2005), 161–176. | Zbl

[8] Enge, A., Thomé, E., Computing class polynomials for abelian surfaces, Experimental Mathematics, 23, 129–145, Taylor and Francis, (2014). | DOI | MR | Zbl

[9] Gaudry, P., Houtmann, T., Kohel, D., Ritzenthaler, C., Weng, A., The 2-adic CM method for genus 2 curves with application to cryptography, conference Advances in cryptology—ASIACRYPT 2006, Lecture Notes in Comput. Sci., 4284, Springer, Berlin, (2006), 114–129. | DOI | Zbl

[10] Goren, E. Z., Lauter, K. E., Class invariants for quartic CM fields, Ann. Inst. Fourier (Grenoble), 57, (2007), no. 2, 457–480. | DOI | MR | Zbl

[11] Goren, E. Z., Lauter, K. E., Genus 2 Curves with Complex Multiplication, International Mathematics Research Notices, (2011), 75 pp.. | DOI | MR | Zbl

[12] Goren, E. Z., Lauter, K. E., A Gross-Zagier formula for quaternion algebras over totally real fields, Algebra and Number Theory, Vol. 7, (2013), no. 6, 1405–1450. | DOI | MR | Zbl

[13] Gross, B. H., On canonical and quasicanonical liftings, Invent. Math., 84, (1986), no. 2, 321–326. | DOI | Zbl

[14] Gross, B. H., Keating, K., On the intersection of modular correspondences, Invent. Math., 112, (1993), 225–245. | DOI | MR | Zbl

[15] Gross, B. H., Zagier, D. B., On singular moduli, J. Reine Angew. Math., 355, (1985), 191–220. | DOI | MR | Zbl

[16] Grundman, H., Johnson-Leung, J., Lauter, K., Salerno, A., Viray, B., Wittenborn, E., Igusa Class Polynomials, Embeddings of Quartic CM Fields, and Arithmetic Intersection Theory, WIN–Women in Numbers: Research Directions in Number Theory, Fields Institute Communications, 60, (2011), 35–60. | DOI | Zbl

[17] Igusa, J., On Siegel modular forms genus two. II, Amer. J. Math., 86, (1964), 392–412. | DOI | MR

[18] Igusa, J., Modular forms and projective invariants, Amer. J. Math., 89, (1967), 817–855. | DOI | MR | Zbl

[19] Lang, S., Elliptic functions, Graduate Texts in Mathematics, 112, 2, with an appendix by J. Tate, Springer-Verlag, New York, (1987), xii+326. | DOI | Zbl

[20] Lauter, K., Naehrig, M., Yang, T., Hilbert theta series and invariants of genus 2 curves, to appear in Journal of Number Theory. | DOI | MR | Zbl

[21] Lauter, K., Viray, B., On singular moduli for arbitrary discriminants, International Mathematics Research Notices, (2014). | DOI | MR | Zbl

[22] Lauter, K., Viray, B., An arithmetic intersection formula for denominators of Igusa class polynomials, American Journal of Mathematics, (2014). | DOI | MR | Zbl

[23] Lauter, K., Yang, T., Computing genus 2 curves from invariants on the Hilbert moduli space, Journal of Number Theory, Elliptic Curve Cryptography, 131, issue 5, (2011). | DOI | MR | Zbl

[24] Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 322, Springer-Verlag, Berlin, (1999), xviii+571. | DOI | Zbl

[25] Serre, J. -P., Tate, J., Good reduction of abelian varieties, Ann. of Math. (2), 88, (1968), 492–517. | DOI | MR | Zbl

[26] Spallek, A. -M., Kurven vom Geschlecht 2 und ihre Anwendung in Public-Key-Kryptosystemen, (1994), Universität Gesamthochschule Essen, Ph. D. Thesis. | Zbl

[27] Streng, M., Computing Igusa Class Polynomials, Mathematics of Computation, 83, (2014), 275–309. | DOI | MR | Zbl

[28] van Wamelen, P., Examples of genus two CM curves defined over the rationals, Math. Comp., 68, no. 225, (1999), 307–320. | DOI | MR | Zbl

[29] Vignéras, M. -F., Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, 800, Springer, Berlin, (1980), vii+169. | DOI | Zbl

[30] Weng, A., Constructing hyperelliptic curves of genus 2 suitable for cryptography, Math. Comp., 72, (2003), no. 241, 435–458 (electronic). | DOI | MR | Zbl

[31] Yang, T., Some Interesting Arithmetic Intersection Formulae in Number Theory, ICCM, I, (2007), 534–545.

[32] Yang, T., Chowla-Selberg Formula and Colmez’s Conjecture, Can. J. Math., 62, (2010), 456–472. | DOI | MR | Zbl

[33] Yang, T., An arithmetic intersection formula on Hilbert modular surfaces, Amer. J. Math., 132, (2010), 1275–1309. | DOI | MR | Zbl

[34] Yang, T., Arithmetic intersection on a Hilbert modular surface and the Faltings height, Asian Journal of Mathematics, 17, no. 2, 2013, 335–382. | DOI | MR | Zbl

Cité par Sources :