Self-similarity in the singularity formation for the unsteady Prandtl’s equations and related problems
Séminaire Laurent Schwartz — EDP et applications (2017-2018), Talk no. 18, 16 p.

The main issue of this text is the singularity formation problem for the two dimensional Prandtl’s system on the upper half plane, as well as for related models. The scaling invariance of the equation is partly responsible for the appearance of a self-similar phenomenon. It involves the formation of a shock along the tangential direction, together with an expansion along the transversal component due to incompressibility.

Published online:
DOI: 10.5802/slsedp.125
Collot, Charles 1

1 Courant Institute of Mathematical Sciences, New York University New York USA
@article{SLSEDP_2017-2018____A18_0,
     author = {Collot, Charles},
     title = {Self-similarity in the singularity formation for the unsteady {Prandtl{\textquoteright}s} equations and related~problems},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:18},
     pages = {1--16},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2017-2018},
     doi = {10.5802/slsedp.125},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/slsedp.125/}
}
TY  - JOUR
AU  - Collot, Charles
TI  - Self-similarity in the singularity formation for the unsteady Prandtl’s equations and related problems
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:18
PY  - 2017-2018
SP  - 1
EP  - 16
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://archive.numdam.org/articles/10.5802/slsedp.125/
DO  - 10.5802/slsedp.125
LA  - en
ID  - SLSEDP_2017-2018____A18_0
ER  - 
%0 Journal Article
%A Collot, Charles
%T Self-similarity in the singularity formation for the unsteady Prandtl’s equations and related problems
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:18
%D 2017-2018
%P 1-16
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://archive.numdam.org/articles/10.5802/slsedp.125/
%R 10.5802/slsedp.125
%G en
%F SLSEDP_2017-2018____A18_0
Collot, Charles. Self-similarity in the singularity formation for the unsteady Prandtl’s equations and related problems. Séminaire Laurent Schwartz — EDP et applications (2017-2018), Talk no. 18, 16 p. doi : 10.5802/slsedp.125. http://archive.numdam.org/articles/10.5802/slsedp.125/

[1] Alexandre, R., Wang, Y. G., Xu, C. J., & Yang, T. (2015). Well-posedness of the Prandtl equation in Sobolev spaces. Journal of the American Mathematical Society, 28(3), 745-784. | DOI | MR | Zbl

[2] Alinhac, S. (1999). Blowup of small data solutions for a quasilinear wave equation in two space dimensions. Annals of mathematics, 149, 97-127. | DOI | MR | Zbl

[3] Barenblatt, G. I. (1996). Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics (Vol. 14). Cambridge University Press. | DOI | Zbl

[4] Bricmont, J., Kupiainen, A. (1994). Universality in blow-up for nonlinear heat equations. Nonlinearity, 7(2), 539. | DOI | MR | Zbl

[5] Cassel, K. W., Smith, F. T., Walker, J. D. A. (1996). The onset of instability in unsteady boundary-layer separation. Journal of Fluid Mechanics, 315, 223-256. | DOI | Zbl

[6] Christodoulou, D., & Perez, D. R. (2016). On the formation of shocks of electromagnetic plane waves in non-linear crystals. Journal of Mathematical Physics, 57(8), 081506. | DOI | MR | Zbl

[7] Collot, C., Ghoul, T. E., Ibrahim, S., & Masmoudi, N. (2018). On singularity formation for the two dimensional unsteady Prandtl’s system. | arXiv

[8] Collot, C., Ghoul, T. E., & Masmoudi, N. (2018). Singularity formation for Burgers equation with transverse viscosity. | arXiv

[9] Collot, C., Merle, F., & Raphael, P. (2017). On strongly anisotropic type II blow up. | arXiv | DOI | MR | Zbl

[10] Cowley, S.J., Computer extension and analytic continuation of blasius expansion for impulsive flow past a circular cylinder (1983). J. Fluid Mech., 135, 389–405. | DOI | MR | Zbl

[11] Dalibard, A. L., & Masmoudi, N. (2018). Separation for the stationary Prandtl equation. | arXiv | DOI | MR | Zbl

[12] Dafermos, C. M. (2010). Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. | DOI | Zbl

[13] Dietert, H., & Gerard-Varet, D. (2018). Well-posedness of the Prandtl equation without any structural assumption. | arXiv | DOI | MR | Zbl

[14] E, W., and Engquist, B., Blowup of solutions of the unsteady Prandtl’s equation (1997). Comm. Pure Appl. Math., 50(12), 1287–1293, 1997. | DOI | MR | Zbl

[15] Eggers, J., Fontelos, M. A. (2008). The role of self-similarity in singularities of partial differential equations. Nonlinearity, 22(1), R1. | DOI | MR | Zbl

[16] Elliott, J. W., Smith, F. T., & Cowley, S. J. (1983). Breakdown of boundary layers:(i) on moving surfaces;(ii) in semi-similar unsteady flow;(iii) in fully unsteady flow. Geophysical & Astrophysical Fluid Dynamics, 25(1-2), 77-138. | DOI

[17] Filippas, S., & Kohn, R. V. (1992). Refined asymptotics for the blowup of u t -Δu=u p . Communications on pure and applied mathematics, 45(7), 821-869. | DOI | Zbl

[18] Galaktionov, V. A., & Vazquez, J. L. (1999). Blow-up of a class of solutions with free boundaries for the Navier-Stokes equations. Advances in Differential equations, 4(3), 297-321. | Zbl

[19] Gargano, F., Sammartino, M., & Sciacca, V. (2009). Singularity formation for Prandtl’s equations. Physica D: Nonlinear Phenomena, 238(19), 1975-1991. | DOI | MR | Zbl

[20] Gérard-Varet, D., & Dormy, E. (2010). On the ill-posedness of the Prandtl equation. Journal of the American Mathematical Society, 23(2), 591-609. | DOI | MR | Zbl

[21] Gérard-Varet, D., Maekawa, Y., & Masmoudi, N. (2016). Gevrey stability of Prandtl expansions for 2D Navier-Stokes. | arXiv | DOI | MR | Zbl

[22] Giga, Y., & Kohn, R. V. (1989). Nondegeneracy of blowup for semilinear heat equations. Communications on Pure and Applied Mathematics, 42(6), 845-884. | DOI | MR | Zbl

[23] Grenier, E., Guo, Y., & Nguyen, T. T. (2016). Spectral instability of characteristic boundary layer flows. Duke Mathematical Journal, 165(16), 3085-3146. | DOI | MR | Zbl

[24] Guo, Y., & Nguyen, T. (2011). A note on Prandtl boundary layers. Communications on Pure and Applied Mathematics, 64(10), 1416-1438. | DOI | MR | Zbl

[25] Herrero, M. A., & Velazquez, J. J. L. (1992). Blow-Up Profiles in One-Dimensional. Semilinear Parabolic Problems. Communications in partial differential equations, 17(1-2), 205-219. | DOI | MR | Zbl

[26] Herrero, M. A., Velazquez, J. J. L. (1993). Blow-up behaviour of one-dimensional semilinear parabolic equations. In Annales de l’IHP Analyse non linéaire (Vol. 10, No. 2, pp. 131-189). Gauthier-Villars. | DOI | Numdam | MR | Zbl

[27] Hong, L., & Hunter, J. K. (2003). Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations. Communications in Mathematical Sciences, 1(2), 293-316. | DOI | MR | Zbl

[28] Il’in, A. M. (1992). Matching of asymptotic expansions of solutions of boundary value problems (Vol. 102). Providence, RI: American Mathematical Society. | DOI | Zbl

[29] Ingham, D. B. (1984). Unsteady separation. Journal of Computational Physics, 53(1), 90-99. | DOI | MR | Zbl

[30] John, F. (1974). Formation of singularities in one-dimensional nonlinear wave propagation. Communications on pure and applied mathematics, 27(3), 377-405. | DOI | MR | Zbl

[31] Kato, T. (1984). Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In Seminar on nonlinear partial differential equations (pp. 85-98). Springer, New York, NY. | DOI

[32] Krieger, J., & Miao, S. (2018). On stability of blow up solutions for the critical co-rotational Wave Maps problem. | arXiv | DOI | MR

[33] Krieger, J., Schlag, W., & Tataru, D. (2008). Renormalization and blow up for charge one equivariant critical wave maps. Inventiones mathematicae, 171(3), 543-615. | DOI | MR | Zbl

[34] Kukavica, I., & Vicol, V. (2013). On the local existence of analytic solutions to the Prandtl boundary layer equations. Communications in Mathematical Sciences, 11(1), 269-292. | DOI | MR | Zbl

[35] Kukavica, I., Vicol, V., Wang, F. (2017). The van Dommelen and Shen singularity in the Prandtl equations. Advances in Mathematics, 307, 288-311. | DOI | MR | Zbl

[36] Lombardo, M. C., Cannone, M., & Sammartino, M. (2003). Well-posedness of the boundary layer equations. SIAM journal on mathematical analysis, 35(4), 987-1004. | DOI | MR | Zbl

[37] Maekawa, Y., On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane (2014). Comm. Pure Appl. Math., 67(7), 1045–1128, 2014. | DOI | MR | Zbl

[38] Masmoudi, N., & Wong, T. K. (2015). Local-in-Time Existence and Uniqueness of Solutions to the Prandtl Equations by Energy Methods. Communications on Pure and Applied Mathematics, 68(10), 1683-1741. | DOI | MR | Zbl

[39] Majda, A. (2012). Compressible fluid flow and systems of conservation laws in several space variables (Vol. 53). Springer Science & Business Media. | DOI

[40] Merle, F., & Zaag, H. (1997). Stability of the blow-up profile for equations of the type u t =Δu+|u| p-1 u. Duke Math. J, 86(1), 143-195. | DOI | MR | Zbl

[41] Merle, F., Raphaël, P., & Szeftel, J. (2017). On Strongly Anisotropic Type I Blowup. International Mathematics Research Notices. | DOI

[42] Merle, F., & Zaag, H. (1998). Refined uniform estimates at blow-up and applications for nonlinear heat equations. Geometric and Functional Analysis, 8(6), 1043-1085. | DOI | MR | Zbl

[43] Oleinik, O. A. (1966). On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. Journal of Applied Mathematics and Mechanics, 30(5), 951-974. | DOI | MR | Zbl

[44] Della Rocca, G., Lombardo, M. C., Sammartino, M., & Sciacca, V. (2006). Singularity tracking for Camassa-Holm and Prandtl’s equations. Appl. Numer. Math, 56(8), 1108-1122. | DOI | MR | Zbl

[45] Sammartino, M., & Caflisch, R. E. (1998). Zero Viscosity Limit for Analytic Solutions, of the Navier-Stokes Equation on a Half-Space. I. Existence for Euler and Prandtl Equations. Communications in Mathematical Physics, 192(2), 433-461. | DOI | MR | Zbl

[46] Sammartino, M., & Caflisch, R. E. (1998). Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equation on a Half-Space. II. Construction of the Navier-Stokes Solution. Communications in mathematical physics, 192(2), 463-491. | DOI | MR | Zbl

[47] Serre, D. (1999). Systems of Conservation Laws 1: Hyperbolicity, entropies, shock waves. Cambridge University Press. | DOI | Zbl

[48] Temam, R., & Wang, X. (1997). The convergence of the solutions of the Navier-Stokes equations to that of the Euler equations. Applied Mathematics Letters, 10(5), 29-33. | DOI | MR

[49] Van Dommelen, L. L., & Cowley, S. J. (1990). On the Lagrangian description of unsteady boundary-layer separation. Part 1. General theory. Journal of Fluid Mechanics, 210, 593-626. | DOI | Zbl

[50] Van Dommelen, L.L., Shen, S.F., The spontaneous generation of the singularity in a separating laminar boundary layer (1980). J. Comput. Phys., 38(2), 125–140. | DOI | MR | Zbl

[51] Velazquez, J. J., Galaktionov, V. A., & Herrero, M. A. (1991). The space structure near a blow-up point for semilinear heat equations: a formal approach. 31(3), 399-411. | DOI

[52] Weissler, F. B. (1980). Local existence and nonexistence for semilinear parabolic equations in L p . Indiana University Mathematics Journal, 29(1), 79-102. | DOI | Zbl

[53] Xin, Z., & Zhang, L. (2004). On the global existence of solutions to the Prandtl’s system. Advances in Mathematics, 181(1), 88-133. | DOI | MR | Zbl

Cited by Sources: