We provide a crash course in weak KAM theory and review recent results concerning the existence and uniqueness of weak KAM solutions and their link with the so-called Mañé conjecture.
@article{SLSEDP_2011-2012____A27_0, author = {Rifford, Ludovic}, title = {Regularity of weak {KAM} solutions and {Ma\~n\'e{\textquoteright}s} {Conjecture}}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:27}, pages = {1--22}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2011-2012}, doi = {10.5802/slsedp.22}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/slsedp.22/} }
TY - JOUR AU - Rifford, Ludovic TI - Regularity of weak KAM solutions and Mañé’s Conjecture JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:27 PY - 2011-2012 SP - 1 EP - 22 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://archive.numdam.org/articles/10.5802/slsedp.22/ DO - 10.5802/slsedp.22 LA - en ID - SLSEDP_2011-2012____A27_0 ER -
%0 Journal Article %A Rifford, Ludovic %T Regularity of weak KAM solutions and Mañé’s Conjecture %J Séminaire Laurent Schwartz — EDP et applications %Z talk:27 %D 2011-2012 %P 1-22 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U http://archive.numdam.org/articles/10.5802/slsedp.22/ %R 10.5802/slsedp.22 %G en %F SLSEDP_2011-2012____A27_0
Rifford, Ludovic. Regularity of weak KAM solutions and Mañé’s Conjecture. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exposé no. 27, 22 p. doi : 10.5802/slsedp.22. http://archive.numdam.org/articles/10.5802/slsedp.22/
[1] P. Bernard. Smooth critical sub-solutions of the Hamilton-Jacobi equation. Math. Res. Lett., 14(3):503–511, 2007. | MR | Zbl
[2] P. Bernard. Existence of critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds. Ann. Sci. École Norm. Sup., 40(3):445–452, 2007. | Numdam | MR | Zbl
[3] J.-B. Bost. Tores invariants des systèmes dynamiques hamiltoniens. In Séminaire Bourbaki, Vol. 1984/85 Astérisque, 133-134:113–157, 1986. | Numdam | MR | Zbl
[4] P. Cannarsa and C. Sinestrari. Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston Inc., Boston, MA, 2004. | MR | Zbl
[5] M. Castelpietra and L. Rifford. Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry. ESAIM Control Optim. Calc. Var., 16 (3):695–718, 2010. | Numdam | MR | Zbl
[6] F. Clarke. A Lipschitz regularity theorem. Ergodic Theory Dynam. Systems, 27(6):1713–1718, 2007. | MR | Zbl
[7] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control. To appear.
[8] G. Contreras and R. Iturriaga. Convex Hamiltonians without conjugate points. Ergodic Theory Dynam. Systems, 19(4):901–952, 1999. | MR | Zbl
[9] A. Fathi. Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math., 324(9):1043–1046, 1997. | MR | Zbl
[10] A. Fathi. Solutions KAM faible conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I Math., 325(6):649–652, 1997. | MR | Zbl
[11] A. Fathi. Orbites hétéroclones et ensemble de Peierl. C. R. Acad. Sci. Paris Sér. I Math., 326(10):1213–1216, 1998. | MR | Zbl
[12] A. Fathi. Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math., 327(3):267–270, 1998. | MR | Zbl
[13] A. Fathi. Weak KAM Theorem and Lagrangian Dynamics. Cambridge University Press, to appear.
[14] A. Fathi, A. Figalli and L. Rifford. On the Hausdorff dimension of the Mather quotient. Comm. Pure Appl. Math., 62(4):445–500, 2009. | MR | Zbl
[15] A. Fathi and A. Siconolfi. Existence of critical subsolutions of the Hamilton-Jacobi equation. Invent. math., 1155:363–388, 2004. | MR | Zbl
[16] A. Figalli and L. Rifford. Closing Aubry sets I. Preprint, 2010.
[17] A. Figalli and L. Rifford. Closing Aubry sets II. Preprint, 2010.
[18] Y. Li and L. Nirenberg. The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Comm. Pure Appl. Math., 58(1):85–146, 2005. | MR | Zbl
[19] R. Mañé. Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity, 9(2):273–310, 1996. | MR | Zbl
[20] J. N. Mather. Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z., 207:169–207, 1991. | MR | Zbl
[21] J. N. Mather. Variational construction of connecting orbits. Ann. Inst. Fourier, 43:1349–1386, 1993. | Numdam | MR | Zbl
[22] J. N. Mather. Examples of Aubry sets. Ergod. Th. Dynam. Sys., 24:1667–1723, 2004. | MR | Zbl
[23] L. Rifford. On viscosity solutions of certain Hamilton-Jacobi equations: Regularity results and generalized Sard’s Theorems. Comm. Partial Differential Equations, 33(3):517–559, 2008. | MR | Zbl
[24] J.-M. Roquejoffre. Propriétés qualitatives des solutions des équations de Hamilton-Jacobi (d’après A. Fathi, A. Siconolfi, P. Bernard). In Séminaire Bourbaki, Vol. 2006/2007 Astérisque, 317:269–293, 2008. | Numdam | MR | Zbl
Cité par Sources :