The problem of dynamic cavitation in nonlinear elasticity
Séminaire Laurent Schwartz — EDP et applications (2012-2013), Exposé no. 14, 17 p.

The notion of singular limiting induced from continuum solutions (slic-solutions) is applied to the problem of cavitation in nonlinear elasticity, in order to re-assess an example of non-uniqueness of entropic weak solutions (with polyconvex energy) due to a forming cavity.

@article{SLSEDP_2012-2013____A14_0,
     author = {Giesselmann, Jan and Miroshnikov, Alexey and Tzavaras, Athanasios E.},
     title = {The problem of dynamic cavitation in nonlinear elasticity},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:14},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2012-2013},
     doi = {10.5802/slsedp.41},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/slsedp.41/}
}
Giesselmann, Jan; Miroshnikov, Alexey; Tzavaras, Athanasios E. The problem of dynamic cavitation in nonlinear elasticity. Séminaire Laurent Schwartz — EDP et applications (2012-2013), Exposé no. 14, 17 p. doi : 10.5802/slsedp.41. http://archive.numdam.org/articles/10.5802/slsedp.41/

[1] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337-403. | MR 475169 | Zbl 0368.73040

[2] J.M. Ball, J.C. Currie and P.J. Olver Null Lagrangians, weak continuity, and variational problems of arbitrary order J. Functional Analysis 41 (1981), 135-174. | MR 615159 | Zbl 0459.35020

[3] J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A, 306, (1982) 557–611. | MR 703623 | Zbl 0513.73020

[4] C. Dafermos, Quasilinear hyperbolic systems with involutions, Arch. Rational Mech. Anal. 94 (1986), 373-389. | MR 846895 | Zbl 0614.35057

[5] S. Demoulini, D.M.A. Stuart, A.E. Tzavaras, A variational approximation scheme for three-dimensional elastodynamics with polyconvex energy, Arch. Rational Mech. Anal. 157 (2001), 325-344. | MR 1831175 | Zbl 0985.74024

[6] D.G.B. Edelen, The null set of the Euler-Lagrange operator Arch. Rational Mech. Anal. 11 (1962), 117-121. | MR 150623 | Zbl 0125.33002

[7] J.L. Ericksen, Nilpotent energies in liquid crystal theories, Arch. Rational Mech. Anal. 10 (1962), 189-196. | MR 169513 | Zbl 0109.23002

[8] J. Giesselmann and A.E. Tzavaras, Singular limiting induced from continuum solutions and the problem of dynamic cavitation. (submitted), (2013), arXiv:1306.6084.

[9] A. Miroshnikov and A.E. Tzavaras, A variational approximation scheme for polyconvex elastodynamics that preserves the positivity of Jacobians. Comm. Math. Sciences 10 (2012), 87-115. | MR 2901302

[10] A. Miroshnikov and A.E. Tzavaras, On the construction and properties of weak solutions describing dynamic cavitation. (preprint). | MR 3302180

[11] K.A. Pericak-Spector and S.J. Spector, Nonuniqueness for a hyperbolic system: cavitation in nonlinear elastodynamics. Arch. Rational Mech. Anal. 101 (1988), 293 - 317. | MR 930330 | Zbl 0651.73005

[12] K.A. Pericak-Spector and S.J. Spector, Dynamic cavitation with shocks in nonlinear elasticity. Proc. Royal Soc. Edinburgh Sect A 127 (1997), 837 - 857. | MR 1465424 | Zbl 0883.73015

[13] T. Qin, Symmetrizing nonlinear elastodynamic system, J. Elasticity 50 (1998), 245-252. | MR 1651340 | Zbl 0919.73015

[14] J. Sivaloganathan and S.J. Spector, Myriad radial cavitating equilibria in nonlinear elasticity. SIAM J. Appl. Math. 63 (2003), 1461 - 1473. | MR 1989912 | Zbl 1045.74014

[15] C. Truesdell, W. Noll, The non-linear field theories of mechanics, Handbuch der Physik III, 3 (Ed. S.Flügge), Springer Verlag, Berlin, 1965. | MR 193816 | Zbl 0779.73004

[16] D.H. Wagner, Symmetric hyperbolic equations of motion for a hyper-elastic material, J. Hyper. Differential Equations 6 (2009), 615-630. | MR 2568811 | Zbl 1180.35345