Mean-field evolution of fermionic systems
Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 8, 13 p.

We study the dynamics of interacting fermionic systems, in the mean-field regime. We consider initial states which are close to quasi-free states and prove that, under suitable assumptions on the inital data and on the many-body interaction, the quantum evolution of the system is approximated by a time-dependent quasi-free state. In particular we prove that the evolution of the reduced one-particle density matrix converges, as the number of particles goes to infinity, to the solution of the time-dependent Hartree-Fock equation. Our theorems allow to describe the dynamics of both pure states (zero temperature states) and mixed states (positive temperature states). Our results hold for all times, and give effective estimates on the rate of convergence towards the Hartree-Fock evolution. The results on pure states are based on joint works with N. Benedikter and B. Schlein, [5, 6]; while those on mixed states are based on a joint work with N. Benedikter, V. Jaksic, C. Saffirio and B. Schlein, [7].

@article{SLSEDP_2014-2015____A8_0,
     author = {Porta, Marcello},
     title = {Mean-field evolution of fermionic systems},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:8},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2014-2015},
     doi = {10.5802/slsedp.68},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/slsedp.68/}
}
Porta, Marcello. Mean-field evolution of fermionic systems. Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 8, 13 p. doi : 10.5802/slsedp.68. http://archive.numdam.org/articles/10.5802/slsedp.68/

[1] H. Araki and W. Wyss. Representations of canonical anticommutation relations. Helv. Phys. Acta 37 (1964), 136. | MR 171521 | Zbl 0137.23903

[2] A. Athanassoulis, T. Paul, F. Pezzotti and M. Pulvirenti. Strong semiclassical approximation of Wigner functions for the Hartree dynamics. Atti della Accademia Nazionale dei Lincei. Rendiconti Lincei. Matematica e Applicazioni. 22, 525–552 (2011). | MR 2904998 | Zbl 1235.81100

[3] V. Bach. Error bound for the Hartree-Fock energy of atoms and molecules. Comm. Math. Phys. 147 (1992), no. 3, 527–548. | MR 1175492 | Zbl 0771.46038

[4] C. Bardos, F. Golse, A. D. Gottlieb, and N. J. Mauser. Mean field dynamics of fermions and the time-dependent Hartree-Fock equation. J. Math. Pures Appl. (9) 82 (2003), no. 6, 665–683. | MR 1996777 | Zbl 1029.82022

[5] N. Benedikter, M. Porta and B. Schlein. Mean-field evolution of fermionic systems. Comm. Math. Phys. 331, 1087–1131 (2014). | MR 3248060

[6] N. Benedikter, M. Porta and B. Schlein. Mean-field dynamics of fermions with relativistic dispersion. J. Math. Phys. 55, 021901 (2014). | MR 3202863 | Zbl 1286.81183

[7] N. Benedikter, V. Jakšić, M. Porta, C. Saffirio and B. Schlein. Mean-field evolution of fermionic mixed states. arXiv:1411.0843

[8] W. Braun and K. Hepp. The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Comm. Math. Phys. 56, 101–113 (1977). | MR 475547 | Zbl 1155.81383

[9] J. Derezinśki and C. Gérard. Mathematics of quantization and quantum fields. Cambridge University press (2013). | MR 3060648 | Zbl 1271.81004

[10] A. Elgart, L. Erdős, B. Schlein, and H.-T. Yau. Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. (9) 83 (2004), no. 10, 1241–1273. | MR 2092307 | Zbl 1059.81190

[11] L. Erdős, B. Schlein, and H.-T. Yau. Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Inv. Math. 167 (2006), 515–614. | MR 2276262 | Zbl 1123.35066

[12] J. Fröhlich and A. Knowles. A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145 (2011), no. 1, 23–50. | MR 2841931 | Zbl 1269.82042

[13] J. Fröhlich and E. Lenzmann. Dynamical collapse of white dwarfs in Hartree- and Hartree-Fock theory. Comm. Math. Phys. 274 (2007), 737–750. | MR 2328910 | Zbl 1130.85004

[14] G. M. Graf and J. P. Solovej. A correlation estimate with applications to quantum systems with Coulomb interactions. Rev. Math. Phys. 6 (1994), 977–997. | MR 1301362 | Zbl 0843.47041

[15] C. Hainzl and B. Schlein. Stellar collapse in the time-dependent Hartree-Fock approximation. Comm. Math. Phys. 287 (2009), 705–717. | MR 2481756 | Zbl 1175.85002

[16] O. E. Lanford III. The evolution of large classical system. Dynamical Systems, theory and applications. Lecture Notes in Physics 38, 1–111 (1975). | MR 479206 | Zbl 0329.70011

[17] E. H. Lieb, R. Seiringer, J. .P. Solovej and J. Yngvason. The mathematics of the Bose gas and its condensation. Oberwolfach seminars 34, Birkhäuser (2005). | MR 2143817 | Zbl 1104.82012

[18] E. H. Lieb and B. Simon. The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977). | MR 428944 | Zbl 0938.81568

[19] P. L. Lions and T. Paul. Sur les mesures de Wigner. Revista matemática iberoamericana 9, 553–618 (1993). | MR 1251718 | Zbl 0801.35117

[20] P. A. Markowich and N. J. Mauser. The classical limit of a self-consistent quantum-Vlasov equation in 3D. Mathematical Models and Methods in Applied Sciences 3, 109 (1993). | MR 1203274 | Zbl 0772.35061

[21] H. Narnhofer and G. L. Sewell. Vlasov hydrodynamics of a quantum mechanical model. Comm. Math. Phys. 79 (1981), no. 1, 9–24. | MR 609224

[22] S. Petrat and P. Pickl. A New Method and a New Scaling For Deriving Fermionic Mean-field Dynamics. arXiv:1409.0480

[23] J. P. Solovej. Many Body Quantum Mechanics. Lecture Notes. Summer 2007. Available at http://www.mathematik.uni-muenchen.de/~sorensen/Lehre/SoSe2013/MQM2/skript.pdf

[24] H. Spohn. On the Vlasov hierarchy, Math. Methods Appl. Sci. 3 (1981), no. 4, 445–455. | MR 657065 | Zbl 0492.35067