Stabilité des solitons de l’équation de Landau-Lifshitz à anisotropie planaire
Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 17, 27 p.

Cet exposé présente plusieurs résultats récents quant à la stabilité des solitons sombres de l’équation de Landau-Lifshitz à anisotropie planaire, en particulier, quant à la stabilité orbitale des trains (bien préparés) de solitons gris [16] et à la stabilité asymptotique de ces mêmes solitons [2].

@article{SLSEDP_2014-2015____A17_0,
     author = {de Laire, Andr\'e and Gravejat, Philippe},
     title = {Stabilit\'e des solitons de l{\textquoteright}\'equation de Landau-Lifshitz \`a anisotropie planaire},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:17},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2014-2015},
     doi = {10.5802/slsedp.75},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/slsedp.75/}
}
de Laire, André; Gravejat, Philippe. Stabilité des solitons de l’équation de Landau-Lifshitz à anisotropie planaire. Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 17, 27 p. doi : 10.5802/slsedp.75. http://archive.numdam.org/articles/10.5802/slsedp.75/

[1] Z.S. Agranovich and V.A. Marchenko, The inverse problem of scattering theory, Gordon and Breach Science Publishers, New York, 1963, Translated from the Russian by B.D. Seckler. | MR 162497 | Zbl 0117.06003

[2] Y. Bahri, Asymptotic stability in the energy space for dark solitons of the Landau-Lifshitz equation, Preprint (2015). | MR 3518533

[3] I. Bejenaru, A.D. Ionescu, C.E. Kenig, and D. Tataru, Global Schrödinger maps in dimensions d2 : Small data in the critical Sobolev spaces, Annals of Math. 173 (2011), no. 3, 1443–1506. | MR 2800718 | Zbl 1233.35112

[4] F. Béthuel, P. Gravejat, and J.-C. Saut, Existence and properties of travelling waves for the Gross-Pitaevskii equation, Stationary and time dependent Gross-Pitaevskii equations (A. Farina and J.-C. Saut, eds.), Contemp. Math., vol. 473, Amer. Math. Soc., Providence, RI, 2008, pp. 55–104. | MR 2522014 | Zbl 1216.35132

[5] —, On the KP-I transonic limit of two-dimensional Gross-Pitaevskii travelling waves, Dynamics of PDE 5 (2008), no. 3, 241–280. | MR 2455894

[6] F. Béthuel, P. Gravejat, J.-C. Saut, and D. Smets, Orbital stability of the black soliton for the Gross-Pitaevskii equation, Indiana Univ. Math. J 57 (2008), no. 6, 2611–2642. | MR 2482993 | Zbl 1171.35012

[7] F. Béthuel, P. Gravejat, and D. Smets, Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation, Ann. Inst. Fourier 64 (2014), no. 1. | EuDML 275571 | Numdam | MR 3330540

[8] —, Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation, Ann. Sci. Éc. Norm. Sup. in press (2015), hal-00767588v2.

[9] R.F. Bikbaev, A.I. Bobenko, and A.R. Its, Landau-Lifshitz equation, uniaxial anisotropy case : Theory of exact solutions, Theoret. and Math. Phys. 178 (2014), no. 2, 143–193. | MR 3301512 | Zbl 1303.82038

[10] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, Amer. Math. Soc., Providence, 2003. | MR 2002047 | Zbl 1055.35003

[11] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys. 85 (1982), no. 4, 549–561. | MR 677997 | Zbl 0513.35007

[12] N.-H. Chang, J. Shatah, and K. Uhlenbeck, Schrödinger maps, Commun. Pure Appl. Math. 53 (2000), no. 5, 590–602. | MR 1737504 | Zbl 1028.35134

[13] D. Chiron and M. Maris, Rarefaction pulses for the nonlinear Schrödinger equation in the transonic limit, Commun. Math. Phys. 326 (2014), no. 2, 329–392. | MR 3165458 | Zbl 1292.35274

[14] S. Cuccagna and R. Jenkins, On asymptotic stability of N-solitons of the Gross-Pitaevskii equation, Preprint (2014), arXiv :1410.6887. | MR 3180733

[15] A. de Laire, Minimal energy for the traveling waves of the Landau-Lifshitz equation, SIAM J. Math. Anal. 46 (2014), no. 1, 96–132. | MR 3148081 | Zbl 1305.35123

[16] A. de Laire and P. Gravejat, Stability in the energy space for chains of solitons of the Landau-Lifshitz equation, J. Differential Equations 258 (2015), no. 1, 1–80. | MR 3271297 | Zbl 1301.35173

[17] K. El Dika, Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation, Disc. Cont. Dynam. Syst. 13 (2005), no. 3, 583–622. | MR 2152333 | Zbl 1083.35019

[18] W. Ding and Y. Wang, Schrödinger flow of maps into symplectic manifolds, Sci. China Ser. A 41 (1998), no. 7, 746–755. | MR 1633799 | Zbl 0918.53017

[19] L.D. Faddeev and L.A. Takhtajan, Hamiltonian methods in the theory of solitons, Classics in Mathematics, Springer-Verlag, Berlin, 2007, Translated by A.G. Reyman. | MR 2348643 | Zbl 1111.37001

[20] I.M. Gel’fand and B.M. Levitan, On the determination of a differential equation from its spectral function, Izvestiya Akad. Nauk. SSSR Ser. Mat. 15 (1951), 309–360. | MR 45281 | Zbl 0044.09301

[21] P. Gérard, The Gross-Pitaevskii equation in the energy space, Stationary and time dependent Gross-Pitaevskii equations (A. Farina and J.-C. Saut, eds.), Contemp. Math., vol. 473, Amer. Math. Soc., Providence, RI, 2008, pp. 129–148. | MR 2522016 | Zbl 1166.35373

[22] P. Gérard and Z. Zhang, Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl. 91 (2009), no. 2, 178–210. | MR 2498754 | Zbl 1232.35152

[23] P. Gravejat, Quelques contributions à l’analyse mathématique de l’équation de Gross-Pitaevskii et du modèle de Bogoliubov-Dirac-Fock, Habilitation thesis, Université Paris Dauphine, December 2011.

[24] P. Gravejat and D. Smets, Asymptotic stability of the black soliton for the Gross-Pitaevskii equation, Preprint (2014), hal-01002094v1.

[25] M. Grillakis, J. Shatah, and W.A. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987), no. 1, 160–197. | MR 901236 | Zbl 0656.35122

[26] E.P. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys. 4 (1963), no. 2, 195–207.

[27] B. Guo and S. Ding, Landau-Lifshitz equations, Frontiers of Research with the Chinese Academy of Sciences, vol. 1, World Scientific, Hackensack, 2008. | MR 2432099 | Zbl 1158.35096

[28] R. Jerrard and D. Smets, On Schrödinger maps from 𝕋 1 to 𝕊 2 , Ann. Sci. Éc. Norm. Sup. 45 (2012), no. 4, 635–678. | Numdam | MR 3059243

[29] C.A. Jones, S.J. Putterman, and P.H. Roberts, Motions in a Bose condensate V. Stability of solitary wave solutions of nonlinear Schrödinger equations in two and three dimensions, J. Phys. A, Math. Gen. 19 (1986), 2991–3011.

[30] C.A. Jones and P.H. Roberts, Motions in a Bose condensate IV. Axisymmetric solitary waves, J. Phys. A, Math. Gen. 15 (1982), 2599–2619.

[31] B.B. Kadomtsev and V.I. Petviashvili, On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl. 15 (1970), no. 6, 539–541. | Zbl 0217.25004

[32] C.E. Kenig and Y. Martel, Asymptotic stability of solitons for the Benjamin-Ono equation, Rev. Mat. Iberoamericana 25 (2009), no. 3, 909–970. | MR 2590690 | Zbl 1247.35133

[33] C.E. Kenig, G. Ponce, and L. Vega, On unique continuation for nonlinear Schrödinger equations, Commun. Pure Appl. Math. 56 (2003), no. 9, 1247–1262. | MR 1980854 | Zbl 1041.35072

[34] Y.S. Kivshar and B. Luther-Davies, Dark optical solitons : physics and applications, Phys. Rep. 298 (1998), no. 2-3, 81–197.

[35] L.D. Landau and E.M. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Zeitsch. der Sow. 8 (1935), 153–169. | Zbl 0012.28501

[36] P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968), no. 5, 467–490. | MR 235310 | Zbl 0162.41103

[37] F. Lin and J. Wei, Traveling wave solutions of the Schrödinger map equation, Commun. Pure Appl. Math. 63 (2010), no. 12, 1585–1621. | MR 2742008 | Zbl 1206.35062

[38] F. Linares and G. Ponce, Introduction to nonlinear dispersive equations, Universitext, Springer-Verlag, Berlin, 2009. | MR 2492151

[39] E. Madelung, Quantumtheorie in Hydrodynamische form, Zts. f. Phys. 40 (1926), 322–326.

[40] Y. Martel, Linear problems related to asymptotic stability of solitons of the generalized KdV equations, SIAM J. Math. Anal. 38 (2006), no. 3, 759–781. | MR 2262941 | Zbl 1126.35055

[41] Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (2001), no. 3, 219–254. | MR 1826966 | Zbl 0981.35073

[42] —, Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity 18 (2005), no. 1, 55–80. | MR 2109467

[43] —, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann. 341 (2008), no. 2, 391–427. | MR 2385662

[44] —, Refined asymptotics around solitons for the gKdV equations with a general nonlinearity, Disc. Cont. Dynam. Syst. 20 (2008), no. 2, 177–218. | MR 2358258

[45] Y. Martel, F. Merle, and T.-P. Tsai, Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys. 231 (2002), no. 2, 347–373. | MR 1946336 | Zbl 1017.35098

[46] —, Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J. 133 (2006), no. 3, 405–466. | MR 2228459

[47] A. Nahmod, J. Shatah, L. Vega, and C. Zeng, Schrödinger maps and their associated frame systems, Int. Math. Res. Not. 2007 (2007), 1–29. | Zbl 1142.35087

[48] N. Papanicolaou and P.N. Spathis, Semitopological solitons in planar ferromagnets, Nonlinearity 12 (1999), no. 2, 285–302. | MR 1677795 | Zbl 0938.35183

[49] L.P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13 (1961), no. 2, 451–454.

[50] E.K. Sklyanin, On complete integrability of the Landau-Lifshitz equation, Tech. Report E-3-79, Leningrad Department of Steklov Institute of Mathematics of the USSR Academy of Sciences, 1979. | Zbl 0449.35089

[51] P.-L. Sulem, C. Sulem, and C. Bardos, On the continuous limit for a system of classical spins, Commun. Math. Phys. 107 (1986), no. 3, 431–454. | MR 866199 | Zbl 0614.35087

[52] M.I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491. | MR 783974 | Zbl 0583.35028

[53] V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972), 62–69. | MR 406174

[54] Y.L. Zhou and B.L. Guo, Existence of weak solution for boundary problems of systems of ferro-magnetic chain, Sci. China Ser. A 27 (1984), no. 8, 799–811. | MR 795163 | Zbl 0571.35058