Stability in exponential time of Minkowski space-time with a space-like translation symmetry
Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 19, 14 p.

In this note, we discuss the nonlinear stability in exponential time of Minkowski space-time with a translation space-like Killing field, proved in [13]. In the presence of such a symmetry, the 3+1 vacuum Einstein equations reduce to the 2+1 Einstein equations with a scalar field. We work in generalized wave coordinates. In this gauge Einstein equations can be written as a system of quasilinear quadratic wave equations. The main difficulty in [13] is due to the decay in 1/t of free solutions to the wave equation in 2 dimensions, which is weaker than in 3 dimensions. As in [21], we have to rely on the particular structure of Einstein equations in wave coordinates. We also have to carefully choose an approximate solution with a non trivial behaviour at space-like infinity to enforce convergence to Minkowski space-time at time-like infinity.

@article{SLSEDP_2014-2015____A19_0,
     author = {Huneau, C\'ecile},
     title = {Stability in exponential time of Minkowski space-time with a space-like translation symmetry},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:19},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2014-2015},
     doi = {10.5802/slsedp.77},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/slsedp.77/}
}
Huneau, Cécile. Stability in exponential time of Minkowski space-time with a space-like translation symmetry. Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 19, 14 p. doi : 10.5802/slsedp.77. http://archive.numdam.org/articles/10.5802/slsedp.77/

[1] S. Alinhac – « The null condition for quasilinear wave equations in two space dimensions I », Invent. Math. 145 (2001), no. 3, p. 597–618. | MR 1856402 | Zbl 1112.35341

[2] S. Alinhac – « An example of blowup at infinity for a quasilinear wave equation », Astérisque (2003), no. 284, p. 1–91, Autour de l’analyse microlocale. | MR 2003417 | Zbl 1053.35097

[3] A. Ashtekar, J. Bičák & B. G. Schmidt – « Asymptotic structure of symmetry-reduced general relativity », Phys. Rev. D (3) 55 (1997), no. 2, p. 669–686. | MR 1435250

[4] R. Bartnik & J. Isenberg – « The constraint equations », in The Einstein equations and the large scale behavior of gravitational fields, Birkhäuser, Basel, 2004, p. 1–38. | MR 2098912 | Zbl 1073.83009

[5] G. Beck – «  Zur Theorie binärer Gravitationsfelder », Zeitschrift für Physik 33 (1925), no. 14, p. 713–728.

[6] B. K. Berger, P. T. Chruściel & V. Moncrief – « On “asymptotically flat” space-times with G 2 -invariant Cauchy surfaces », Ann. Physics 237 (1995), no. 2, p. 322–354. | MR 1314228 | Zbl 0967.83507

[7] Y. Choquet-Bruhat & R. Geroch – « Global aspects of the Cauchy problem in general relativity », Comm. Math. Phys. 14 (1969), p. 329–335. | MR 250640 | Zbl 0182.59901

[8] Y. Choquet-Bruhat & V. Moncrief – « Nonlinear stability of an expanding universe with the S 1 isometry group », in Partial differential equations and mathematical physics (Tokyo, 2001), Progr. Nonlinear Differential Equations Appl., vol. 52, Birkhäuser Boston, Boston, MA, 2003, p. 57–71. | MR 1957625 | Zbl 1062.35149

[9] D. Christodoulou & S. KlainermanThe global nonlinear stability of the Minkowski space, Princeton Mathematical Series, vol. 41, Princeton University Press, Princeton, NJ, 1993. | MR 1316662 | Zbl 0827.53055

[10] P. Godin – « Lifespan of solutions of semilinear wave equations in two space dimensions », Comm. Partial Differential Equations 18 (1993), no. 5-6, p. 895–916. | MR 1218523 | Zbl 0813.35055

[11] A. Hoshiga – « The existence of global solutions to systems of quasilinear wave equations with quadratic nonlinearities in 2-dimensional space », Funkcial. Ekvac. 49 (2006), no. 3, p. 357–384. | MR 2297944 | Zbl 1149.35383

[12] C. Huneau – « Constraint equations for 3 + 1 vacuum Einstein equations with a translational space-like Killing field in the asymptotically flat case II », arXiv:1410.6061.

[13] —, « Stability in exponential time of Minkowski Space-time with a translation space-like Killing field », arXiv:1410.6068.

[14] F. John – « Blow-up for quasilinear wave equations in three space dimensions », Comm. Pure Appl. Math. 34 (1981), no. 1, p. 29–51. | MR 600571 | Zbl 0453.35060

[15] S. Klainerman – « The null condition and global existence to nonlinear wave equations », in Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), Lectures in Appl. Math., vol. 23, Amer. Math. Soc., Providence, RI, 1986, p. 293–326. | MR 837683 | Zbl 0599.35105

[16] S. Klainerman – « Uniform decay estimates and the Lorentz invariance of the classical wave equation », Comm. Pure Appl. Math. 38 (1985), no. 3, p. 321–332. | MR 784477 | Zbl 0635.35059

[17] H. Kubo & K. Kubota – « Scattering for systems of semilinear wave equations with different speeds of propagation », Adv. Differential Equations 7 (2002), no. 4, p. 441–468. | MR 1869119 | Zbl 1223.35232

[18] H. Lindblad – « Global solutions of nonlinear wave equations », Comm. Pure Appl. Math. 45 (1992), no. 9, p. 1063–1096. | MR 1177476 | Zbl 0840.35065

[19] —, « Global solutions of quasilinear wave equations », Amer. J. Math. 130 (2008), no. 1, p. 115–157. | MR 2382144

[20] H. Lindblad & I. Rodnianski – « The weak null condition for Einstein’s equations », C. R. Math. Acad. Sci. Paris 336 (2003), no. 11, p. 901–906. | MR 1994592 | Zbl 1045.35101

[21] —, « The global stability of Minkowski space-time in harmonic gauge », Ann. of Math. (2) 171 (2010), no. 3, p. 1401–1477. | MR 2680391

[22] R. WaldGeneral Relativity, The University of Chicago press, 1984. | MR 757180 | Zbl 0549.53001