Structure entropique du noyau de collision de Landau
Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 14, 9 p.

On présente des résultats permettant de mieux comprendre la structure du noyau de collision de Landau original (celui correspondant aux collisions entre particules chargées dans un plasma). À partir d’une estimation de la production d’entropie du noyau, on obtient des résultats pour l’équation de Landau homogène avec potentiel coulombien, qui concernent la régularité et le comportement asymptotique lorsque |v|+.

@article{SLSEDP_2014-2015____A14_0,
     author = {Desvillettes, Laurent},
     title = {Structure entropique du noyau de collision de Landau},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:14},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2014-2015},
     doi = {10.5802/slsedp.81},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/slsedp.81/}
}
Desvillettes, Laurent. Structure entropique du noyau de collision de Landau. Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 14, 9 p. doi : 10.5802/slsedp.81. http://archive.numdam.org/articles/10.5802/slsedp.81/

[1] R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg. Entropy dissipation and long-range interactions. Arch. Rat. Mech. Anal., 152, (2000), 327-355. | MR 1765272 | Zbl 0968.76076

[2] R. Alexandre, J. Liao, and C. Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. arXiv :1302.1814. | MR 3375485

[3] R. Alexandre, and C. Villani. On the Landau approximation in plasma physics. Annales Inst. Henri Poincaré, (C) Analyse non-linéaire, 21 n.1 (2004), 61-95. | Numdam | MR 2037247 | Zbl 1044.83007

[4] K. Carrapatoso and L. He. Personal Communication.

[5] C. Cercignani. The Boltzmann equation and its applications. Springer, New York, 1988. | MR 1313028 | Zbl 0646.76001

[6] S. Chapman and T.G. Cowling. The mathematical theory of non–uniform gases. Cambridge Univ. Press, London, 1952. | Zbl 0049.26102

[7] H. Chen, W.-X. Li, C.-J. Xu. Propagation of Gevrey regularity for solutions of Landau equations, Kinetic and Related Models, 1 n.3 (2008), 355–368. | MR 2425602 | Zbl 1157.35328

[8] H. Chen, W.-X. Li, C.-J. Xu. Analytic smoothness effect of solutions for spatially homogeneous Landau equation, J. Differ. Equations, 248, (2010), 77–94. | MR 2557895 | Zbl 1180.35148

[9] P. Degond, B. Lucquin-Desreux. The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Mod. Meth. Appl. Sci., 2 n.2 (1992), 167–182. | MR 1167768 | Zbl 0755.35091

[10] L. Desvillettes. Entropy dissipation estimates for the Landau equation in the Coulomb case and applications arXiv :1408.6025. | MR 3369941

[11] L. Desvillettes. On asymptotics of the Boltzmann equation when the collisions become grazing. Transport Theory Statist. Phys., 21, n.3 (1992), 259–276. | MR 1165528 | Zbl 0769.76059

[12] L. Desvillettes and C. Villani. On the spatially homogeneous Landau equation for hard potentials. Part I. Existence, uniqueness and smoothness. Commun. Partial Differential Equations, 25, n.1-2 (2000), 179-259. | MR 1737547 | Zbl 0946.35109

[13] L. Desvillettes and C. Villani. On the spatially homogeneous Landau equation for hard potentials. Part II. H-Theorem and applications. Commun. Partial Differential Equations, 25, n.1-2 (2000), 261-298. | MR 1737548 | Zbl 0951.35130

[14] N. Fournier. Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential. Commun. Math. Phys., 299, (2010), 765–782. | MR 2718931 | Zbl 1198.35274

[15] N. Fournier, H. Guérin. Well-posedness of the spatially homogeneous Landau equation for soft potentials. J. Funct. Anal., 25, n.8, (2009), 2542–2560. | MR 2502525 | Zbl 1165.35467

[16] Y. Guo. The Landau Equation in a Periodic Box. Comm. Math. Phys., 231, n.3, (2002), 391-434. | MR 1946444 | Zbl 1042.76053

[17] E.M. Lifschitz and L.P. Pitaevskii. Physical kinetics. Pergamon Press., Oxford, 1981.

[18] P.L. Lions. On Boltzmann and Landau equations. Phil. Trans. R. Soc. Lond. A, 346, (1994), 191–204. | MR 1278244 | Zbl 0809.35137

[19] Y. Morimoto, K. Pravda-Starov and C.-J. Xu. A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation. Kinet. Relat. Models, 6, n.4 (2013), 715–727. | MR 3177625 | Zbl 1284.35102

[20] C. Villani. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Rat. Mech. Anal. 143 n.3, (1998), 273–307. | MR 1650006 | Zbl 0912.45011

[21] C. Villani. On the spatially homogeneous Landau equation for Maxwellian molecules. Math. Meth. Mod. Appl. Sci. 8 n.6, (1998), 957–983. | MR 1646502 | Zbl 0957.82029

[22] K.-C. Wu. Global in time estimates for the spatially homogeneous Landau equation with soft potentials. J. Funct. Anal., 266, (2014), 3134-3155. | MR 3158719 | Zbl 1296.35112