On the spectral instability of parallel shear flows
Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 22, 14 p.

This short note is to announce our recent results [2,3] which provide a complete mathematical proof of the viscous destabilization phenomenon, pointed out by Heisenberg (1924), C.C. Lin and Tollmien (1940s), among other prominent physicists. Precisely, we construct growing modes of the linearized Navier-Stokes equations about general stationary shear flows in a bounded channel (channel flows) or on a half-space (boundary layers), for sufficiently large Reynolds number R. Such an instability is linked to the emergence of Tollmien-Schlichting waves in describing the early stage of the transition from laminar to turbulent flows.

@article{SLSEDP_2014-2015____A22_0,
     author = {Grenier, Emmanuel and Guo, Yan and Nguyen, Toan T.},
     title = {On the spectral instability of parallel shear flows},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:22},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2014-2015},
     doi = {10.5802/slsedp.82},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/slsedp.82/}
}
Grenier, Emmanuel; Guo, Yan; Nguyen, Toan T. On the spectral instability of parallel shear flows. Séminaire Laurent Schwartz — EDP et applications (2014-2015), Exposé no. 22, 14 p. doi : 10.5802/slsedp.82. http://archive.numdam.org/articles/10.5802/slsedp.82/

[1] P. G. Drazin, W. H. Reid, Hydrodynamic stability. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University, Cambridge–New York, 1981. | MR 604359 | Zbl 0449.76027

[2] E. Grenier, Y. Guo, and T. Nguyen, Spectral instability of symmetric shear flows in a two-dimensional channel, arXiv:1402.1395.

[3] E. Grenier, Y. Guo, and T. Nguyen, Spectral instability of characteristic boundary layer flows, arXiv:1406.3862.

[4] W. Heisenberg, Über Stabilität und Turbulenz von Flüssigkeitsströmen. Ann. Phys. 74, 577–627 (1924)

[5] W. Heisenberg, On the stability of laminar flow. Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, pp. 292–296. Amer. Math. Soc., Providence, R. I., 1952. | MR 51078 | Zbl 0049.25904

[6] C. C. Lin, The theory of hydrodynamic stability. Cambridge, at the University Press, 1955. | MR 77331 | Zbl 0068.39202

[7] W. Orr, Stability and instability of steady motions of a perfect liquid and of a viscous fluid, Parts I and II, Proc. Ir. Acad. Sect. A, Math Astron. Phys. Sci., 27 (1907), pp. 9-68, 69-138.

[8] Lord Rayleigh, On the stability, or instability, of certain fluid motions. Proc. London Math. Soc. 11 (1880), 57–70. | MR 1575266

[9] H. Schlichting, Boundary layer theory, Translated by J. Kestin. 4th ed. McGraw–Hill Series in Mechanical Engineering. McGraw–Hill Book Co., Inc., New York, 1960. | MR 122222 | Zbl 0434.76027

[10] A. Sommerfeld, Ein Beitrag zur hydrodynamischen Erklärung der turbulent Flussigkeitsbewe-gung, Atti IV Congr. Internat. Math. Roma, 3 (1908), pp. 116-124.

[11] W. Wasow, The complex asymptotic theory of a fourth order differential equation of hydrodynamics. Ann. of Math. (2) 49, (1948). 852–871. | MR 27933 | Zbl 0031.40202

[12] W. Wasow, Asymptotic solution of the differential equation of hydrodynamic stability in a domain containing a transition point. Ann. of Math. (2) 58, (1953). 222–252. | MR 61737 | Zbl 0051.06602

[13] W. Wasow, Linear turning point theory. Applied Mathematical Sciences, 54. Springer-Verlag, New York, 1985. ix+246 pp. | MR 771669 | Zbl 0558.34049