Modeling the wind circulation around mills with a Lagrangian stochastic approach
The SMAI Journal of computational mathematics, Tome 2 (2016), pp. 177-214.

This work aims at introducing model methodology and numerical studies related to a Lagrangian stochastic approach applied to the computation of the wind circulation around mills. We adapt the Lagrangian stochastic downscaling method that we have introduced in [3] and [4] to the atmospheric boundary layer and we introduce here a Lagrangian version of the actuator disc methods to take account of the mills. We present our numerical method and numerical experiments in the case of non rotating and rotating actuator disc models. First, for validation purpose we compare some numerical experiments against wind tunnel measurements. Second we perform some numerical experiments at the atmospheric scale and present some features of our numerical method, in particular the computation of the probability distribution of the wind in the wake zone, as a byproduct of the fluid particle model and the associated PDF method.

Publié le :
DOI : 10.5802/smai-jcm.13
Mots clés : Lagrangian stochastic model, PDF method, atmospheric boundary layer, actuator disc model
Bossy, Mireille 1 ; Espina, José 2 ; Moricel, Jacques 2 ; Paris, Cristián 2 ; Rousseau, Antoine 3

1 Tosca Laboratory, Inria Sophia Antipolis – Méditerranée, France
2 Inria, Chile
3 Lemon Laboratory, Inria Sophia Antipolis – Méditerranée, France
@article{SMAI-JCM_2016__2__177_0,
     author = {Bossy, Mireille and Espina, Jos\'e and Moricel, Jacques and Paris, Cristi\'an and Rousseau, Antoine},
     title = {Modeling the wind circulation around mills with a {Lagrangian} stochastic approach},
     journal = {The SMAI Journal of computational mathematics},
     pages = {177--214},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {2},
     year = {2016},
     doi = {10.5802/smai-jcm.13},
     mrnumber = {3633549},
     zbl = {1416.76242},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/smai-jcm.13/}
}
TY  - JOUR
AU  - Bossy, Mireille
AU  - Espina, José
AU  - Moricel, Jacques
AU  - Paris, Cristián
AU  - Rousseau, Antoine
TI  - Modeling the wind circulation around mills with a Lagrangian stochastic approach
JO  - The SMAI Journal of computational mathematics
PY  - 2016
SP  - 177
EP  - 214
VL  - 2
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://archive.numdam.org/articles/10.5802/smai-jcm.13/
DO  - 10.5802/smai-jcm.13
LA  - en
ID  - SMAI-JCM_2016__2__177_0
ER  - 
%0 Journal Article
%A Bossy, Mireille
%A Espina, José
%A Moricel, Jacques
%A Paris, Cristián
%A Rousseau, Antoine
%T Modeling the wind circulation around mills with a Lagrangian stochastic approach
%J The SMAI Journal of computational mathematics
%D 2016
%P 177-214
%V 2
%I Société de Mathématiques Appliquées et Industrielles
%U http://archive.numdam.org/articles/10.5802/smai-jcm.13/
%R 10.5802/smai-jcm.13
%G en
%F SMAI-JCM_2016__2__177_0
Bossy, Mireille; Espina, José; Moricel, Jacques; Paris, Cristián; Rousseau, Antoine. Modeling the wind circulation around mills with a Lagrangian stochastic approach. The SMAI Journal of computational mathematics, Tome 2 (2016), pp. 177-214. doi : 10.5802/smai-jcm.13. http://archive.numdam.org/articles/10.5802/smai-jcm.13/

[1] Abbott, I.H.; von Doenhoff, A.E. Theory of Wing Sections, Dover Publications, 1959

[2] Bergmann, M.; Iollo, A. Numerical simulation of horizontal-axis wind turbine (HAWT), In International Conference on Computational Fluid Dynamics (ICCFD7) (2012)

[3] Bernardin, F.; Bossy, M.; Chauvin, C.; Drobinski, P.; Rousseau, A.; Salameh, T. Stochastic Downscaling Methods : Application to Wind Refinement, Stoch. Environ. Res. Risk. Assess., Volume 23 (2009) no. 6 | DOI | MR | Zbl

[4] Bernardin, F.; Bossy, M.; Chauvin, C.; Jabir, J-F.; Rousseau, A. Stochastic Lagrangian Method for Downscaling Problems in Computational Fluid Dynamics, ESAIM: M2AN, Volume 44 (2010) no. 5, pp. 885-920 http://hal.archives-ouvertes.fr/docs/00/46/23/79/PDF/Version-Hal.pdf | DOI | Numdam | MR | Zbl

[5] Bossy, M.; Fontbona, J.; Jabin, P-E.; Jabir, J-F. Local Existence of Analytical Solutions to an Incompressible Lagrangian Stochastic Model in a Periodic Domain, Communications in Partial Differential Equations, Volume 38 (2013) no. 7, pp. 1141-1182 http://www.tandfonline.com/doi/abs/10.1080/03605302.2013.786727 | DOI | MR | Zbl

[6] Bossy, M.; Jabir, J.-F. Lagrangian stochastic models with specular boundary condition, Journal of Functional Analysis, Volume 268 (2015) no. 6, pp. 1309 -1381 http://www.sciencedirect.com/science/article/pii/S0022123614005102 | DOI | MR | Zbl

[7] Carlotti, P. Two-Point Properties Of Atmospheric Turbulence Very Close To The Ground: Comparison Of A High Resolution Les With Theoretical Models, Boundary-Layer Meteorology, Volume 104 (2002) no. 3, pp. 381-410 | DOI

[8] Chamorro, L.P.; Porté-Agel, F. Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study, Boundary-Layer Meteorology, Volume 136 (2010) no. 3, pp. 515-533 | DOI

[9] Drobinski, P. Solar energy conversion and photoenergy systems, Wind and Solar Renewable Energy Potential Resources Estimation (Encyclopedia of Life Support Systems), Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK (2014)

[10] Drobinski, P.; Carlotti, P.; Redelsperger, J.-L.; Masson, V.; Banta, R.M.; Newsom, R.K. Numerical and experimental investigation of the neutral atmospheric surface layer, J. Atmos. Sci., Volume 64 (2007), pp. 137-156 | DOI

[11] Durbin, P.-A.; Speziale, C.-G. Realizability of second-moment closure via stochastic analysis, J. Fluid Mech., Volume 280 (1994), pp. 395-407 | DOI | Zbl

[12] El Kasmi, A.; Masson, C. An extended model for turbulent flow through horizontal-axis wind turbines, Journal of Wind Engineering and Industrial Aerodynamics, Volume 96 (2008) no. 1, pp. 103 -122 http://www.sciencedirect.com/science/article/pii/S0167610507000943 | DOI

[13] Hallanger, A.; Sand, I.Ø. CFD Wake Modelling with a BEM Wind Turbine Sub-Model, Modeling, Identification and Control, Volume 34 (2013) no. 1, pp. 19-33 | DOI

[14] Hansen, M. Aerodynamics of wind turbines, Earthscan, London, 2008

[15] Haworth, D.C. Progress in probability density function methods for turbulent reacting flows, Progress in Energy and Combustion Science, Volume 36 (2010) no. 2, pp. 168 -259 http://www.sciencedirect.com/science/article/pii/S036012850900046X | DOI

[16] Kebaier, A. Statistical Romberg extrapolation: a new variance reduction method and applications to option pricing, The Annals of Applied Probability, Volume 15 (2005) no. 4, pp. 2681-2705 | DOI | MR | Zbl

[17] Lafore et al, P.M. The Meso-NH Atmospheric Simulation System. Part I: Adiabatic formulation and control simulations, Annales Geophysicae, Volume 16 (1998), pp. 90-109 | DOI

[18] Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application, John Wiley & Sons, Ltd, 2002 | DOI

[19] Masters, I.; Malki, R.; Williams, A.J.; Croft, T.N. A Modified k-epsilon Turbulence Model for Tidal Stream Turbine Simulations Using a Coupled BEM-CFD Model, ICOE (2012)

[20] Mikkelsen, R. Actuator Disc Methods Applied to Wind Turbines, Technical University of Denmark (2003) (Doctoral dissertation)

[21] Minier, J.-P.; Peirano, E. The pdf approach to turbulent polydispersed two-phase flows, Physics Reports, Volume 352 (2001) no. 1-3, pp. 1-214 http://www.sciencedirect.com/science/article/pii/S0370157301000114 | DOI | MR | Zbl

[22] Minier, J.-P.; Peirano, E.; Chibbaro, S. Weak first- and second-order numerical schemes for stochastic differential equations appearing in Lagrangian two-phase flow modeling, Monte Carlo Methods and Applications, Volume 9 (2003) no. 2, pp. 129-135 | DOI | MR | Zbl

[23] Minier, J.-P.; Pozorski, J. Wall-boundary conditions in probability density function methods and application to a turbulent channel flow, Physics of Fluids, Volume 11 (1999) no. 9, pp. 2632-2644 http://scitation.aip.org/content/aip/journal/pof2/11/9/10.1063/1.870125 | DOI | Zbl

[24] Pope, S.B. Lagrangian pdf methods for turbulent flows, Annu. Rev. Fluid Mech., Volume 26 (1994), pp. 23-63 | DOI | MR | Zbl

[25] Pope, S.B. Turbulent flows, Cambridge University Press, Cambridge, 2000, xxxiv+771 pages

[26] Porté-Agel, F.; Lub, Hao; Wu, Y.-T. A large-eddy simulation framework for wind energy applications, In the Fifth International Symposium on Computational Wind Engineering (CWE2010) (2010)

[27] Raviart, P.-A. An analysis of particle methods, Numerical methods in fluid dynamics (Como, 1983) (Lecture Notes in Math.), Volume 1127, Springer, Berlin, 1985, pp. 243-324 | DOI | MR

[28] Réthoré, P.E.; Sørensen, N.N.; Bechmann, A.; Zahle, F. Study of the atmospheric wake turbulence of a CFD actuator disc model, In Proceedings of European Wind Energy Conference, Marseille, France (2009) (16-19 March)

[29] Schmidt, H.; Schumann, U. Coherent structure of the convective boundary layer derived from large-eddy simulations, J. Fluid Mech. (1989) | DOI | Zbl

[30] Sørensen, J.N.; Myken, A. Unsteady actuator disc model for horizontal axis wind turbines, Journal of Wind Engineering and Industrial Aerodynamics, Volume 39 (1992) no. 1–3, pp. 139 -149 http://www.sciencedirect.com/science/article/pii/016761059290540Q | DOI

[31] Sunada, S.; Sakaguchi, A.; Kawachi, K. Airfoil Section Characteristics at a Low Reynolds Number, ASME. J. Fluids Eng., Volume 119 (1997) no. 1, pp. 129-135 | DOI

[32] Wu, Y.-T.; Porté-Agel, F. Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations, Boundary-Layer Meteorology, Volume 138 (2011) no. 3, pp. 345-366 | DOI

[33] Wu, Y.-T.; Porté-Agel, F. Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects, Boundary-Layer Meteorology, Volume 146 (2013) no. 2, pp. 181-205 | DOI

Cité par Sources :