Serendipity and Tensor Product Affine Pyramid Finite Elements
The SMAI Journal of computational mathematics, Tome 2 (2016), pp. 215-228.

Using the language of finite element exterior calculus, we define two families of H 1 -conforming finite element spaces over pyramids with a parallelogram base. The first family has matching polynomial traces with tensor product elements on the base while the second has matching polynomial traces with serendipity elements on the base. The second family is new to the literature and provides a robust approach for linking between Lagrange elements on tetrahedra and serendipity elements on affinely-mapped cubes while preserving continuity and approximation properties. We define shape functions and degrees of freedom for each family and prove unisolvence and polynomial reproduction results.

Publié le :
DOI : 10.5802/smai-jcm.14
Classification : 65N30, 41A20, 41A10
Mots clés : Finite element methods; pyramid elements; rational functions
Gillette, Andrew 1

1 Department of Mathematics, University of Arizona, Tucson, AZ, USA 85721.
@article{SMAI-JCM_2016__2__215_0,
     author = {Gillette, Andrew},
     title = {Serendipity and {Tensor} {Product} {Affine} {Pyramid} {Finite} {Elements}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {215--228},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {2},
     year = {2016},
     doi = {10.5802/smai-jcm.14},
     mrnumber = {3633550},
     zbl = {1416.65445},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/smai-jcm.14/}
}
TY  - JOUR
AU  - Gillette, Andrew
TI  - Serendipity and Tensor Product Affine Pyramid Finite Elements
JO  - The SMAI Journal of computational mathematics
PY  - 2016
SP  - 215
EP  - 228
VL  - 2
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://archive.numdam.org/articles/10.5802/smai-jcm.14/
DO  - 10.5802/smai-jcm.14
LA  - en
ID  - SMAI-JCM_2016__2__215_0
ER  - 
%0 Journal Article
%A Gillette, Andrew
%T Serendipity and Tensor Product Affine Pyramid Finite Elements
%J The SMAI Journal of computational mathematics
%D 2016
%P 215-228
%V 2
%I Société de Mathématiques Appliquées et Industrielles
%U http://archive.numdam.org/articles/10.5802/smai-jcm.14/
%R 10.5802/smai-jcm.14
%G en
%F SMAI-JCM_2016__2__215_0
Gillette, Andrew. Serendipity and Tensor Product Affine Pyramid Finite Elements. The SMAI Journal of computational mathematics, Tome 2 (2016), pp. 215-228. doi : 10.5802/smai-jcm.14. http://archive.numdam.org/articles/10.5802/smai-jcm.14/

[1] Ainsworth, M.; Davydov, O.; Schumaker, L. Bernstein–Bézier finite elements on tetrahedral–hexahedral–pyramidal partitions, Computer Methods in Applied Mechanics and Engineering, Volume 304 (2016), pp. 140-170 | DOI | Zbl

[2] Arnold, D.N.; Awanou, G. The serendipity family of finite elements, Foundations of Computational Mathematics, Volume 11 (2011) no. 3, pp. 337-344 | DOI | MR | Zbl

[3] Arnold, D.N.; Boffi, D.; Bonizzoni, F. Finite element differential forms on curvilinear cubic meshes and their approximation properties, Numerische Mathematik (2014), pp. 1-20

[4] Arnold, D.N.; Falk, R.; Winther, R. Finite element exterior calculus, homological techniques, and applications, Acta Numerica (2006), pp. 1-155 | DOI | MR

[5] Arnold, D.N.; Falk, R.S.; Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability, Bulletin of the American Mathematical Society, Volume 47 (2010) no. 2, pp. 281-354 | DOI | MR

[6] Arnold, D.N.; Logg, A. Periodic Table of the Finite Elements, SIAM News, Volume 47 (2014. femtable.org) no. 9

[7] Baudouin, T.C.; Remacle, J.-F.; Marchandise, E.; Henrotte, F.; Geuzaine, C. A frontal approach to hex-dominant mesh generation, Advanced Modeling and Simulation in Engineering Sciences, Volume 1 (2014) no. 1, pp. 1-30 | DOI

[8] Bedrosian, G. Shape functions and integration formulas for three-dimensional finite element analysis, International journal for numerical methods in engineering, Volume 35 (1992) no. 1, pp. 95-108 | DOI | Zbl

[9] Beirão Da Veiga, L.; Brezzi, F.; Marini, L.D.; Russo, A. Serendipity nodal VEM spaces, Computers & Fluids, Volume in press (2016) | MR | Zbl

[10] Bergot, M.; Cohen, G.; Duruflé, M. Higher-order finite elements for hybrid meshes using new nodal pyramidal elements, Journal of Scientific Computing, Volume 42 (2010) no. 3, pp. 345-381 | DOI | MR | Zbl

[11] Brenner, S.; Scott, L. The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 2002 | DOI | Zbl

[12] Chan, J.; Wang, Z.; Modave, A.; Remacle, T. J.-F.and Warburton GPU-accelerated discontinuous Galerkin methods on hybrid meshes, Journal of Computational Physics, Volume 318 (2016), pp. 142-168 | DOI | MR | Zbl

[13] Chan, J.; Warburton, T. A comparison of high order interpolation nodes for the pyramid, SIAM Journal on Scientific Computing, Volume 37 (2015) no. 5, p. A2151-A2170 | DOI | MR | Zbl

[14] Chan, J.; Warburton, T. hp-finite element trace inequalities for the pyramid, Computers & Mathematics with Applications, Volume 69 (2015) no. 6, pp. 510-517 | DOI | MR

[15] Chan, J.; Warburton, T. A short note on a Bernstein–Bézier basis for the pyramid, arXiv:1508.05609 (2015) | Zbl

[16] Chan, J.; Warburton, T. Orthogonal bases for vertex-mapped pyramids, SIAM Journal on Scientific Computing, Volume 38 (2016) no. 2, p. A1146-A1170 | DOI | MR | Zbl

[17] Christiansen, S.; Gillette, A. Constructions of some minimal finite element systems, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 50 (2016) no. 3, pp. 833-850 | DOI | MR | Zbl

[18] Ciarlet, P. The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, 40, SIAM, Philadelphia, PA, 2002 | MR

[19] Coulomb, J-L.; Zgainski, F-X.; Maréchal, Y. A pyramidal element to link hexahedral, prismatic and tetrahedral edge finite elements, IEEE Trans. Magnetics, Volume 33 (1997) no. 2, pp. 1362-1365 | DOI

[20] Fuentes, F.; Keith, B.; Demkowicz, L.; Nagaraj, S. Orientation embedded high order shape functions for the exact sequence elements of all shapes, Computers and Mathematics with Applications, Volume 70 (2015) no. 4, pp. 353 -458 | DOI | MR

[21] Hughes, T. The finite element method, Prentice Hall Inc., Englewood Cliffs, NJ, 1987

[22] Liping, L.; Davies, K.B.; Krezek, M.; Guan, L. On higher order pyramidal finite elements, Advances in Applied Mathematics and Mechanics, Volume 3 (2011) no. 2, pp. 131-140 | DOI | MR | Zbl

[23] Liu, L.; Davies, K. B.; Yuan, K.; Křížek, M. On symmetric pyramidal finite elements, Dynamics of Continuous Discrete and Impulsive Systems Series B, Volume 11 (2004), pp. 213-228 | MR | Zbl

[24] Mandel, J. Iterative solvers by substructuring for the p-version finite element method, Computer Methods in Applied Mechanics and Engineering, Volume 80 (1990) no. 1-3, pp. 117-128 | DOI | MR | Zbl

[25] Nigam, N.; Phillips, J. High-order conforming finite elements on pyramids, IMA Journal of Numerical Analysis, Volume 32 (2012) no. 2, pp. 448-483 | DOI | MR | Zbl

[26] Nigam, N.; Phillips, J. Numerical integration for high order pyramidal finite elements, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 46 (2012) no. 2, pp. 239-263 | DOI | Numdam | MR | Zbl

[27] Strang, G.; Fix, G. An analysis of the finite element method, Prentice-Hall Inc., Englewood Cliffs, N. J., 1973, xiv+306 pages

[28] Szabó, B.A.; Babuška, I. Finite element analysis, Wiley-Interscience, 1991

[29] Witherden, F.D.; Vincent, P.E. On the identification of symmetric quadrature rules for finite element methods, Computers & Mathematics with Applications, Volume 69 (2015) no. 10, pp. 1232-1241 | DOI | MR

[30] Zgainski, F-X.; Coulomb, J-L.; Maréchal, Y.; Claeyssen, F.; Brunotte, X. A new family of finite elements: the pyramidal elements, IEEE Trans. Magnetics, Volume 32 (1996) no. 3, pp. 1393-1396 | DOI

Cité par Sources :