Virtual Element approximations of the Vector Potential Formulation of Magnetostatic problems
The SMAI Journal of computational mathematics, Tome 4 (2018), pp. 399-416.

We consider, as a simple model problem, the application of Virtual Element Methods (VEM) to the linear Magnetostatic three-dimensional problem in the classical Vector Potential formulation. The Vector Potential is treated as a triplet of 0-forms, approximated by nodal VEM spaces. However this is not done using three classical H 1 -conforming nodal Virtual Elements, and instead we use the Stokes Elements introduced originally in the paper Divergence free Virtual Elements for the Stokes problem on polygonal meshes (ESAIM Math. Model. Numer. Anal. 51 (2017), 509–535) for the treatment of incompressible fluids.

Publié le :
DOI : 10.5802/smai-jcm.40
Classification : 65N30
Mots clés : Virtual Element Methods, Serendipity, Magnetostatic problems, Vector Potential
Beirão da Veiga, Lourenço 1 ; Brezzi, Franco 2 ; Marini, L. Donatella 3 ; Russo, Alessandro 1

1 Dipartimento di Matematica e Applicazioni, Università di Milano - Bicocca, Via Cozzi 55, I-20153, Milano, Italy and IMATI-CNR, Via Ferrata 1, I-27100 Pavia, Italy
2 IMATI-CNR, Via Ferrata 1, I-27100 Pavia, Italy
3 Dipartimento di Matematica, Università di Pavia, Via Ferrata 5, I-27100 Pavia, Italy and IMATI-CNR, Via Ferrata 1, I-27100 Pavia, Italy
@article{SMAI-JCM_2018__4__399_0,
     author = {Beir\~ao da Veiga, Louren\c{c}o and Brezzi, Franco and Marini, L. Donatella and Russo, Alessandro},
     title = {Virtual {Element} approximations of the {Vector} {Potential} {Formulation} of {Magnetostatic} problems},
     journal = {The SMAI Journal of computational mathematics},
     pages = {399--416},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {4},
     year = {2018},
     doi = {10.5802/smai-jcm.40},
     mrnumber = {3883675},
     zbl = {1416.78024},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/smai-jcm.40/}
}
TY  - JOUR
AU  - Beirão da Veiga, Lourenço
AU  - Brezzi, Franco
AU  - Marini, L. Donatella
AU  - Russo, Alessandro
TI  - Virtual Element approximations of the Vector Potential Formulation of Magnetostatic problems
JO  - The SMAI Journal of computational mathematics
PY  - 2018
SP  - 399
EP  - 416
VL  - 4
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://archive.numdam.org/articles/10.5802/smai-jcm.40/
DO  - 10.5802/smai-jcm.40
LA  - en
ID  - SMAI-JCM_2018__4__399_0
ER  - 
%0 Journal Article
%A Beirão da Veiga, Lourenço
%A Brezzi, Franco
%A Marini, L. Donatella
%A Russo, Alessandro
%T Virtual Element approximations of the Vector Potential Formulation of Magnetostatic problems
%J The SMAI Journal of computational mathematics
%D 2018
%P 399-416
%V 4
%I Société de Mathématiques Appliquées et Industrielles
%U http://archive.numdam.org/articles/10.5802/smai-jcm.40/
%R 10.5802/smai-jcm.40
%G en
%F SMAI-JCM_2018__4__399_0
Beirão da Veiga, Lourenço; Brezzi, Franco; Marini, L. Donatella; Russo, Alessandro. Virtual Element approximations of the Vector Potential Formulation of Magnetostatic problems. The SMAI Journal of computational mathematics, Tome 4 (2018), pp. 399-416. doi : 10.5802/smai-jcm.40. http://archive.numdam.org/articles/10.5802/smai-jcm.40/

[1] Antonietti, P. F.; Beirão da Veiga, L.; Scacchi, S.; Verani, M. A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes, SIAM J. Numer. Anal., Volume 54 (2016) no. 1, pp. 34-57 | DOI | MR | Zbl

[2] Antonietti, P. F.; Bruggi, M.; Scacchi, S.; Verani, M. On the virtual element method for topology optimization on polygonal meshes: A numerical study, Comput. Math. Appl., Volume 74 (2017) no. 5, pp. 1091 -1109 | DOI | MR | Zbl

[3] Arnold, D. N.; Awanou, G. Finite element differential forms on cubical meshes, Math. Comp., Volume 83 (2014) no. 288, pp. 1551-1570 | DOI | MR | Zbl

[4] Arnold, D. N.; Falk, R. S.; Winther, R. Finite element exterior calculus, homological techniques, and applications, Acta Numer., Volume 15 (2006), pp. 1-155 | DOI | MR | Zbl

[5] Arroyo, M.; Ortiz, M. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, Internat. J. Numer. Methods Engrg., Volume 65 (2006) no. 13, pp. 2167-2202 | DOI | MR | Zbl

[6] Artioli, E.; de Miranda, S.; Lovadina, C.; Patruno, L. A stress/displacement virtual element method for plane elasticity problems, Comput. Methods Appl. Mech. Engrg., Volume 325 (2017), pp. 155-174 | DOI | MR | Zbl

[7] Assous, F.; Ciarlet, P. Jr.; Sonnendrücker, E. Resolution of the Maxwell equations in a domain with reentrant corners, RAIRO Modél. Math. Anal. Numér., Volume 32 (1998) no. 3, pp. 359-389 | DOI | Numdam | MR | Zbl

[8] Ayuso, B.; Lipnikov, K.; Manzini, G. The nonconforming virtual element method, ESAIM Math. Model. Numer. Anal., Volume 50 (2016) no. 3, pp. 879-904 | DOI | MR | Zbl

[9] Babuška, I.; Banerjee, U.; Osborn, J. E. Survey of meshless and generalized finite element methods: a unified approach, Acta Numer., Volume 12 (2003), pp. 1-125 | DOI | MR

[10] Badia, S.; Codina, R. A nodal-based finite element approximation of the Maxwell problem suitable for singular solutions, SIAM J. Numer. Anal., Volume 50 (2012) no. 2, pp. 398-417 | DOI | MR | Zbl

[11] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L. D.; Russo, A. Basic principles of virtual element methods, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 1, pp. 199-214 | DOI | MR | Zbl

[12] Beirão da Veiga, L.; Brezzi, F.; Dassi, F.; Marini, L. D.; Russo, A. Virtual Element approximation of 2D magnetostatic problems, Comput. Methods Appl. Mech. Engrg., Volume 327 (2017), pp. 173-195 | DOI | MR | Zbl

[13] Beirão da Veiga, L.; Brezzi, F.; Dassi, F.; Marini, L. D.; Russo, A. Lowest order Virtual Element approximation of magnetostatic problems, Comput. Methods Appl. Mech. Engrg., Volume 332 (2018), pp. 343-362 | DOI | MR | Zbl

[14] Beirão da Veiga, L.; Brezzi, F.; Dassi, F.; Marini, L. D.; Russo, A. Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions, Chinese Annals of Mathematics Series B, Volume 39 (2018) no. 2, pp. 315-334 | DOI | MR | Zbl

[15] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A. The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci., Volume 24 (2014) no. 8, pp. 1541-1573 | DOI | MR | Zbl

[16] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A. H(div) and H(curl)-conforming VEM, Numer. Math., Volume 133 (2016) no. 2, pp. 303-332 | Zbl

[17] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A. Serendipity Nodal VEM spaces, Comp. Fluids, Volume 141 (2016), pp. 2-12 | DOI | MR | Zbl

[18] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A. Serendipity Face and Edge VEM spaces, Rend. Lincei Mat. Appl., Volume 28 (2017) no. 1, pp. 143-180 | MR | Zbl

[19] Beirão da Veiga, L.; Lovadina, C.; Russo, A. Stability Analysis for the Virtual Element Method, Math. Models Methods Appl. Sci., Volume 27 (2017) no. 13, pp. 2557-2594 | DOI | MR | Zbl

[20] Beirão da Veiga, L.; Lovadina, C.; Vacca, G. Divergence free Virtual Elements for the Stokes problem on polygonal meshes, ESAIM Math. Model. Numer. Anal., Volume 51 (2017), pp. 509-535 | DOI | MR

[21] Beirão da Veiga, L.; Lovadina, C.; Vacca, G. Virtual Elements for the Navier-Stokes problem on polygonal meshes, SIAM J. Numer. Anal., Volume 56 (2018) no. 3, pp. 1210-1242 | DOI | MR | Zbl

[22] Benedetto, M. F.; Berrone, S.; Pieraccini, S.; Scialò, S. The virtual element method for discrete fracture network simulations, Comput. Methods Appl. Mech. Engrg., Volume 280 (2014), pp. 135-156 | DOI | MR | Zbl

[23] Benedetto, M. F.; Berrone, S.; Scialò, S. A globally conforming method for solving flow in discrete fracture networks using the Virtual Element Method, Finite Elements in Analysis and Design, Volume 109 (2016), pp. 23 -36 | DOI

[24] Berenger, J.-P. A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., Volume 114 (1994) no. 2, pp. 185-200 | DOI | MR | Zbl

[25] Bermúdez, A.; Gómez, D.; Salgado, P. Mathematical Models and Numerical Simulation in Electromagnetism, Unitext, 74, Springer, 2014 | MR | Zbl

[26] Bishop, J. E. A displacement-based finite element formulation for general polyhedra using harmonic shape functions, Internat. J. Numer. Methods Engrg., Volume 97 (2014) no. 1, pp. 1-31 | DOI | MR | Zbl

[27] Bochev, P. B.; Hyman, J. M. Principles of mimetic discretizations of differential operators, Compatible spatial discretizations (IMA Vol. Math. Appl.), Volume 142, Springer, New York, 2006, pp. 89-119 | DOI | MR | Zbl

[28] Bonito, A.; Guermond, J.-L.; Luddens, F. Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains, J. Math. Anal. Appl., Volume 408 (2013) no. 2, pp. 498-512 | DOI | MR | Zbl

[29] Bonito, A.; Guermond, J.-L.; Luddens, F. An interior penalty method with C 0 finite elements for the approximation of the Maxwell equations in heterogeneous media: convergence analysis with minimal regularity, ESAIM Math. Model. Numer. Anal., Volume 50 (2016) no. 5, pp. 1457-1489 | DOI | MR | Zbl

[30] Bramble, J. H.; Pasciak, J. E. A new approximation technique for div-curl systems, Math. Comp., Volume 73 (2004) no. 248, pp. 1739-1762 | DOI | MR | Zbl

[31] Bramble, J. H.; Pasciak, J. E. Analysis of a finite element PML approximation for the three dimensional time-harmonic Maxwell problem, Math. Comp., Volume 77 (2008) no. 261, pp. 1-10 | DOI | MR | Zbl

[32] Brenner, S. C.; Cui, J.; Li, F.; Sung, L.-Y. A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem, Numer. Math., Volume 109 (2008) no. 4, pp. 509-533 | DOI | MR | Zbl

[33] Brenner, S. C.; Guan, Q.; Sung, Li-Y. Some estimates for virtual element methods, Comput. Methods Appl. Math., Volume 17 (2017) no. 4, pp. 553-574 | DOI | MR | Zbl

[34] Brenner, S. C.; Scott, L. R. The mathematical theory of finite element methods, Texts in Applied Mathematics, 15, Springer, New York, 2008, xviii+397 pages | DOI | MR | Zbl

[35] Brenner, S. C.; Sung, L. Virtual Element Methods on meshes with small edges or faces, Math. Models Methods Appl. Sci., Volume 28 (2018), pp. 1291-1336 | DOI | MR | Zbl

[36] Brezzi, F.; Marini, L. D. Virtual element methods for plate bending problems, Comput. Methods Appl. Mech. Engrg., Volume 253 (2013), pp. 455-462 | DOI | MR | Zbl

[37] Buffa, A.; Ciarlet, P. Jr.; Jamelot, E. Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements, Numer. Math., Volume 113 (2009) no. 4, pp. 497-518 | DOI | MR | Zbl

[38] Cáceres, E.; Gatica, G. N. A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem, IMA J. Numer. Anal., Volume 37 (2017) no. 1, pp. 296-331 | DOI | MR | Zbl

[39] Cáceres, E.; Gatica, G. N.; Sequeira, F.A. A mixed virtual element method for the Brinkman problem, Math. Models Methods Appl. Sci., Volume 27 (2017) no. 04, pp. 707-743 | DOI | MR | Zbl

[40] Cangiani, A.; Georgoulis, E.H.; Pryer, T.; Sutton, O.J. A posteriori error estimates for the virtual element method, Numer. Math., Volume 137 (2017) no. 4, pp. 857-893 | DOI | MR

[41] Chen, L.; Huang, J. Some error analysis on virtual element methods, CALCOLO., Volume 55:5 (2018) no. 1 | DOI | MR | Zbl

[42] Cheng, C.H.A.; Shkoller, S. Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and Partial Trace of a Vector Field on Sobolev-Class Domains, J. Math. Fluid. Mech., Volume 19 (2017), pp. 375-422 | DOI | MR | Zbl

[43] Chi, H.; da Veiga, L. Beirão; Paulino, G.H. Some basic formulations of the virtual element method (VEM) for finite deformations, Comput. Methods Appl. Mech. Engrg., Volume 318 (2017), pp. 148 -192 | DOI | MR | Zbl

[44] Christiansen, S. H.; Gillette, A. Constructions of some minimal finite element systems, ESAIM Math. Model. Numer. Anal., Volume 50 (2016) no. 3, pp. 833-850 | DOI | MR | Zbl

[45] Cockburn, B.; Di Pietro, D.; Ern, A. Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods, ESAIM Math. Model. Numer. Anal., Volume 50 (2016), pp. 635-650 | DOI | MR | Zbl

[46] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., Volume 47 (2009) no. 2, pp. 1319-1365 | DOI | MR | Zbl

[47] Costabel, M. A coercive bilinear form for Maxwell’s equations, J. Math. Anal. Appl., Volume 157 (1991) no. 2, pp. 527-541 | DOI | MR | Zbl

[48] Costabel, M.; Dauge, M.; Nicaise, S. Singularities of Maxwell interface problems, M2AN Math. Model. Numer. Anal., Volume 33 (1999) no. 3, pp. 627-649 | DOI | Numdam | MR | Zbl

[49] Dassi, F.; Mascotto, L. Exploring High-order three dimensional Virtual Elements: bases and stabilizations, Comput. Math. Appl. (2018) no. 9, pp. 3379-3401 | DOI | MR | Zbl

[50] Demkowicz, L.; Kurtz, J.; Pardo, D.; Paszenski, M.; Rachowicz, W.; Zdunek, A. Computing with hp-adaptive finite elements. Vol. 2. Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications, Applied Mathematics and Nonlinear Science, Chapman & Hall/CRC, Boca Raton, 2008, xvi+417 pages

[51] Dolejší, V.; Feistauer, M. Discontinuous Galerkin method. Analysis and applications to compressible flow, Springer Series in Computational Mathematics, 48, Springer, Cham, 2015, xiv+572 pages | Zbl

[52] Droniou, J.; Eymard, R.; Gallouët, T.; Herbin, R. Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 13, pp. 2395-2432 | DOI | MR | Zbl

[53] Duan, H.-Y.; Tan, R. C. E.; Yang, S.-Y.; You, C.-S. Computation of Maxwell singular solution by nodal-continuous elements, J. Comput. Phys., Volume 268 (2014), pp. 63-83 | DOI | MR | Zbl

[54] Duan, H.-Y.; Tan, R. C. E.; Yang, S.-Y.; You, C.-S. A mixed H 1 -conforming finite element method for solving Maxwell’s equations with non-H 1 solution, SIAM J. Sci. Comput., Volume 40 (2018) no. 1, p. A224-A250 | DOI | MR | Zbl

[55] Floater, M. S. Generalized barycentric coordinates and applications, Acta Numer., Volume 24 (2015), pp. 215-258 | DOI | MR | Zbl

[56] Gain, A. L.; Talischi, C.; Paulino, G. H. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Engrg., Volume 282 (2014), pp. 132-160 | DOI | MR | Zbl

[57] Gain, A.L.; Paulino, G. H.; Leonardo, S. D.; Menezes, I. F. M. Topology optimization using polytopes, Comput. Methods Appl. Mech. Engrg., Volume 293 (2015), pp. 411-430 | DOI | MR | Zbl

[58] Gerdes, K. A summary of infinite element formulations for exterior Helmholtz problems, Comput. Methods Appl. Mech. Engrg., Volume 164 (1998) no. 1-2, pp. 95-105 | DOI | MR | Zbl

[59] Houston, P.; Perugia, I.; Schötzau, D. Mixed discontinuous Galerkin approximation of the Maxwell operator, SIAM J. Numer. Anal., Volume 42 (2004) no. 1, pp. 434-459 | DOI | MR | Zbl

[60] Idelsohn, S. R.; Oñate, E.; Calvo, N.; Del Pin, F. The meshless finite element method, Internat. J. Numer. Methods Engrg., Volume 58 (2003) no. 6, pp. 893-912 | DOI | MR | Zbl

[61] Kanayama, H.; Motoyama, R.; Endo, K.; Kikuchi, F. Three dimensional Magnetostatic Analysis using Nédélec’s Elements, IEEE Trans. Magn., Volume 26 (1990), pp. 682-685 | DOI

[62] Lipnikov, K.; Manzini, G.; Shashkov, M. Mimetic finite difference method, J. Comput. Phys., Volume 257 (2014) no. part B, pp. 1163-1227 | DOI | MR | Zbl

[63] Moheit, L.; Marburg, S. Infinite elements and their influence on normal and radiation modes in exterior acoustics, J. Comput. Acoust., Volume 25 (2017) no. 4, 1650020, 20 pages | DOI | MR

[64] Monk, P. Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003, xiv+450 pages | Zbl

[65] Mora, D.; Rivera, G.; Rodríguez, R. A virtual element method for the Steklov eigenvalue problem, Math. Models Methods Appl. Sci., Volume 25 (2015) no. 8, pp. 1421-1445 | DOI | MR | Zbl

[66] Natarajan, S.; Bordas, S.; Ooi, E.T. Virtual and smoothed finite elements: A connection and its application to polygonal/polyhedral finite element methods, Internat. J. Numer. Methods Engrg., Volume 104 (2015) no. 13, pp. 1173-1199 | DOI | MR | Zbl

[67] Ortiz-Bernardin, A.; Russo, A.; Sukumar, N. Consistent and stable meshfree Galerkin methods using the virtual element decomposition, Internat. J. Numer. Methods Engrg., Volume 112 (2017) no. 7, pp. 655-684 | DOI | MR

[68] Perugia, I.; Pietra, P.; Russo, A. A plane wave virtual element method for the Helmholtz problem, ESAIM Math. Model. Numer. Anal., Volume 50 (2016) no. 3, pp. 783-808 | DOI | MR | Zbl

[69] Rjasanow, S.; Weisser, S. FEM with Trefftz trial functions on polyhedral elements, J. Comput. Appl. Math., Volume 263 (2014), pp. 202-217 | DOI | MR | Zbl

[70] Sukumar, N.; Malsch, E. A. Recent advances in the construction of polygonal finite element interpolants, Arch. Comput. Methods Engrg., Volume 13 (2006) no. 1, pp. 129-163 | DOI | MR | Zbl

[71] Vacca, G. Virtual element methods for hyperbolic problems on polygonal meshes, Comput. Math. Appl., Volume 74 (2017) no. 5, pp. 882-898 | DOI | MR | Zbl

[72] Wriggers, P.; Rust, W.T.; Reddy, B.D. A virtual element method for contact, Comput. Mech., Volume 58 (2016) no. 6, pp. 1039-1050 | DOI | MR

[73] Wriggers, P.; Rust, W.T.; Reddy, B.D.; Hudobivnik, B. Efficient virtual element formulations for compressible and incompressible finite deformations, Comput. Mech., Volume 60 (2017) no. 2, pp. 253-268 | DOI | MR | Zbl

[74] Zhao, J.; Chen, S.; Zhang, B. The nonconforming virtual element method for plate bending problems, Math. Models Methods Appl. Sci., Volume 26 (2016) no. 09, pp. 1671-1687 | DOI | MR | Zbl

Cité par Sources :