Congested shallow water model: on floating body
The SMAI Journal of computational mathematics, Tome 6 (2020), pp. 227-251.

We consider the floating body problem in the vertical plane on a large space scale. More precisely, we are interested in the numerical modeling of a body floating freely on the water such as icebergs or wave energy converters. The fluid-solid interaction is formulated using a congested shallow water model for the fluid and Newton’s second law of motion for the solid. We make a particular focus on the energy transfer between the solid and the water since it is of major interest for energy production. A numerical approximation based on the coupling of a finite volume scheme for the fluid and a Newmark scheme for the solid is presented. An entropy correction based on an adapted choice of discretization for the coupling terms is made in order to ensure a dissipation law at the discrete level. Simulations are presented to verify the method and to show the feasibility of extending it to more complex cases.

Publié le :
DOI : 10.5802/smai-jcm.67
Classification : 35Q35, 70E15, 74F10, 76B07, 76M12
Mots clés : shallow water equations, wave-body interaction, congested model, coupling, entropy satisfying scheme
Godlewski, Edwige 1 ; Parisot, Martin 1 ; Sainte-Marie, Jacques 1 ; Wahl, Fabien 1

1 Sorbonne Université, université Paris-Diderot SPC, CNRS, Inria, laboratoire Jacques-Louis Lions, LJLL, ANGE team, F-75005 Paris, France
@article{SMAI-JCM_2020__6__227_0,
     author = {Godlewski, Edwige and Parisot, Martin and Sainte-Marie, Jacques and Wahl, Fabien},
     title = {Congested shallow water model: on floating body},
     journal = {The SMAI Journal of computational mathematics},
     pages = {227--251},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {6},
     year = {2020},
     doi = {10.5802/smai-jcm.67},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/smai-jcm.67/}
}
TY  - JOUR
AU  - Godlewski, Edwige
AU  - Parisot, Martin
AU  - Sainte-Marie, Jacques
AU  - Wahl, Fabien
TI  - Congested shallow water model: on floating body
JO  - The SMAI Journal of computational mathematics
PY  - 2020
SP  - 227
EP  - 251
VL  - 6
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://archive.numdam.org/articles/10.5802/smai-jcm.67/
DO  - 10.5802/smai-jcm.67
LA  - en
ID  - SMAI-JCM_2020__6__227_0
ER  - 
%0 Journal Article
%A Godlewski, Edwige
%A Parisot, Martin
%A Sainte-Marie, Jacques
%A Wahl, Fabien
%T Congested shallow water model: on floating body
%J The SMAI Journal of computational mathematics
%D 2020
%P 227-251
%V 6
%I Société de Mathématiques Appliquées et Industrielles
%U http://archive.numdam.org/articles/10.5802/smai-jcm.67/
%R 10.5802/smai-jcm.67
%G en
%F SMAI-JCM_2020__6__227_0
Godlewski, Edwige; Parisot, Martin; Sainte-Marie, Jacques; Wahl, Fabien. Congested shallow water model: on floating body. The SMAI Journal of computational mathematics, Tome 6 (2020), pp. 227-251. doi : 10.5802/smai-jcm.67. http://archive.numdam.org/articles/10.5802/smai-jcm.67/

[1] Agamloh, E. B.; Wallace, A. K.; von Jouanne, A. Application of Fluid-Structure Interaction Simulation of an Ocean Wave Energy Extraction Device, Renewable Energy, Volume 33 (2008) no. 4, pp. 748-757 | DOI

[2] Aïssiouene, N.; Bristeau, M.-O.; Godlewski, E.; Sainte-Marie, J. A combined finite volume - finite element scheme for a dispersive shallow water system, Networks and Heterogeneous Media (NHM) (2016) | Zbl

[3] Audusse, E.; Bristeau, M.-O.; Perthame, B.; Sainte-Marie, J. A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation, ESAIM, Math. Model. Numer. Anal., Volume 45 (2011) no. 1, pp. 169-200 | DOI | Numdam | MR | Zbl

[4] Benyo, K. Wave-structure interaction for long wave models with a freely moving bottom (2017) (https://hal.archives-ouvertes.fr/hal-01665775)

[5] Benyo, K. Numerical analysis of the weakly nonlinear Boussinesq system with a freely moving body on the bottom (2018) (https://arxiv.org/abs/1805.07216)

[6] Bergmann, M.; Iollo, A. Bioinspired swimming simulations, J. Comput. Phys., Volume 323 (2016), pp. 310-321 | DOI | MR | Zbl

[7] Bocchi, E. Floating structures in shallow water: local well-posedness in the axisymmetric case (2018) (https://arxiv.org/abs/1802.07643)

[8] Bocchi, E. On the return to equilibrium problem for axisymmetric floating structures in shallow water, 2019 (https://arxiv.org/pdf/1901.04023) | arXiv

[9] Bonneton, P.; Chazel, F.; Lannes, D.; Marche, F.; Tissier, M. A splitting approach for the fully nonlinear and weakly dispersive Green–Naghdi model, J. Comput. Phys., Volume 230 (2011) no. 4, pp. 1479-1498 | DOI | MR | Zbl

[10] Bosi, U.; Engsig-Karup, A. P.; Eskilsson, C.; Ricchiuto, M. A spectral/hp element depth-integrated model for nonlinear wave–body interaction, Comput. Methods Appl. Mech. Eng., Volume 348 (2019), pp. 222-249 | DOI | MR | Zbl

[11] Bresch, D.; Lannes, D.; Metivier, G. Waves Interacting With A Partially Immersed Obstacle In The Boussinesq Regime (2019) (https://arxiv.org/pdf/1902.04837v1) | arXiv

[12] Bristeau, M.-O.; Mangeney, A.; Sainte-Marie, J.; Seguin, N. An energy-consistent depth-averaged Euler system: derivation and properties, Discrete and Continuous Dynamical Systems - Series B, Volume 20 (2015) no. 4, pp. 961-988 | DOI | MR | Zbl

[13] Cancès, C.; Guichard, C. Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure, Found. Comput. Math., Volume 17 (2017) no. 6, pp. 1525-1584 | DOI | MR | Zbl

[14] Chabannes, V.; Pena, G.; Prud’homme, C. High-order fluid–structure interaction in 2D and 3D application to blood flow in arteries, J. Comput. Appl. Math., Volume 246 (2013), pp. 1-9 Fifth International Conference on Advanced COmputational Methods in ENgineering (ACOMEN 2011) | DOI | MR | Zbl

[15] Ducassou, B.; Nuñez, J.; Cruchaga, M.; Abadie, S. A fictitious domain approach based on a viscosity penalty method to simulate wave/structure interaction, Journal of Hydraulic Research, Volume 55 (2017) no. 6, pp. 847-862 | arXiv | DOI

[16] Favrie, N.; Gavrilyuk, S. A rapid numerical method for solving Serre–Green–Naghdi equations describing long free surface gravity waves, Nonlinearity, Volume 30 (2017) no. 7, p. 2718 | DOI | MR | Zbl

[17] Fernández-Nieto, E. D.; Parisot, M.; Penel, Y.; Sainte-Marie, J. A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows, Commun. Math. Sci., Volume 16 (2018) no. 5, pp. 1169-1202 | DOI | MR | Zbl

[18] Folley, M.; Babarit, A.; Child, B.; Forehand, D.; O’Boyle, L.; Silverthorne, K.; Spinneken, J.; Troch, P. A review of numerical modelling of wave energy converter arrays, ASME 2012 International Conference on Ocean, Offshore and Artic Engineering (2012) | DOI | HAL

[19] Fritz, J. On the motion of floating bodies. I, Commun. Pure Appl. Math., Volume 2 (1949) no. 1, pp. 13-57 | DOI | MR | Zbl

[20] Godlewski, E.; Parisot, M.; Sainte-Marie, J.; Wahl, F. Congested shallow water model: roof modeling in free surface flow, ESAIM, Math. Model. Numer. Anal., Volume 52 (2018) no. 5, pp. 1679-1707 | DOI | MR | Zbl

[21] Godlewski, E.; Raviart, P.-A. Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, 118, Springer, 1996, viii+509 pages | MR

[22] Guerber, E.; Benoit, B.; Grilli, S. T.; Buvat, C. A fully nonlinear implicit model for wave interactions with submerged structures in forced or free motion, Eng. Anal. Bound. Elem., Volume 36 (2012) no. 7, pp. 1151-1163 | DOI | MR | Zbl

[23] Harris, J.; Kuznetsov, K.; Peyrard, C.; Saviot, S.; Mivehchi, A.; Grilli, S. T.; Benoit, M. Simulation of wave forces on a gravity based foundation by a BEM based on fully nonlinear potential flow, 27th Offshore and Polar Engineering Conference (2017)

[24] Iguchi, T.; Lannes, D. Hyperbolic free boundary problems and applications to wave-structure interactions (2018) (https://arxiv.org/abs/1806.07704)

[25] Kashiwagi, M Non-linear simulations of wave-induced motions of a floating body by means of the mixed Eulerian-Lagrangian method, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Volume 214 (2000) no. 6, pp. 841-855 | DOI

[26] Knudsen, J. M.; Hjorth, P. G. Elements of Newtonian Mechanics, Springer, 2012

[27] Lannes, D. On the Dynamics of Floating Structures, Ann. PDE, Volume 3 (2017) no. 1, p. 11 | DOI | MR | Zbl

[28] Lannes, D.; Bonneton, P. Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, Physics of Fluids, Volume 21 (2009) no. 1, 016601 | DOI | Zbl

[29] Lannes, D.; Marche, F. A new class of fully nonlinear and weakly dispersive Green–Naghdi models for efficient 2D simulations, J. Comput. Phys., Volume 282 (2015), pp. 238-268 | DOI | MR | Zbl

[30] LeVeque, R. J. Finite volume methods for hyperbolic problems, Cambridge University Press, 2002 | Zbl

[31] Palm, J.; Eskilsson, C.; Moura Paredes, G.; Bergdahl, L. CFD simulation of a moored floating wave energy converter, Proceedings of the 10th European Wave and Tidal Energy Conference (2013)

[32] Parisot, M. Entropy-satisfying scheme for a hierarchy of dispersive reduced models of free surface flow, International Journal for Numerical Methods in Fluids, Volume 91 (2019) no. 10, pp. 509-531 | DOI | MR

[33] Parisot, M.; Vila, J.-P. Centered-Potential Regularization for the advection upstream splitting method, SIAM J. Numer. Anal., Volume 54 (2016) no. 5, pp. 3083-3104 | DOI | MR | Zbl

[34] Parolini, N.; Quarteroni, A. Mathematical models and numerical simulations for the America’s Cup, Comput. Methods Appl. Mech. Eng., Volume 194 (2005) no. 9, pp. 1001-1026 | DOI | MR | Zbl

[35] Penalba, M.; Touzón, I; Lopez-Mendia, J.; Nava, V. A numerical study on the hydrodynamic impact of device slenderness and array size in wave energy farms in realistic wave climates, Ocean Engineering, Volume 142 (2017), pp. 224-232 | DOI

[36] Quarteroni, A.; Tuveri, M.; Veneziani, A. Computational vascular fluid dynamics: problems, models and methods, Computing and Visualization in Science, Volume 2 (2000) no. 4, pp. 163-197 | DOI | Zbl

[37] Steen, K. Energy conservation in Newmark based time integration algorithms, Comput. Methods Appl. Mech. Eng., Volume 195 (2006) no. 44, pp. 6110-6124 | MR | Zbl

[38] Wu, G. X.; Taylor, R. Eatock The coupled finite element and boundary element analysis of nonlinear interactions between waves and bodies, Ocean Engineering, Volume 30 (2003) no. 3, pp. 387-400 | DOI

[39] Yu, Y.-H.; Li, Y. Reynolds-Averaged Navier–Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system, Computers & Fluids, Volume 73 (2013), pp. 104-114 | DOI | Zbl

Cité par Sources :