Géométries modèles de dimension trois
Séminaire de théorie spectrale et géométrie, Tome 27 (2008-2009), pp. 17-43.

On expose une preuve détaillée de la classification par Thurston des huit géométries modèles de dimension trois.

In this expository article, we give a detailed proof of the classification by Thurston of the eight model geometries in dimension three.

DOI : https://doi.org/10.5802/tsg.269
Classification : 57M50,  22E40,  57M60
Mots clés : géométrie modèle, géométrie de Thurston, géométrisation
@article{TSG_2008-2009__27__17_0,
     author = {de Cornulier, Yves},
     title = {G\'eom\'etries mod\`eles de dimension trois},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {17--43},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {27},
     year = {2008-2009},
     doi = {10.5802/tsg.269},
     mrnumber = {2799145},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/tsg.269/}
}
TY  - JOUR
AU  - de Cornulier, Yves
TI  - Géométries modèles de dimension trois
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2008-2009
DA  - 2008-2009///
SP  - 17
EP  - 43
VL  - 27
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/tsg.269/
UR  - https://www.ams.org/mathscinet-getitem?mr=2799145
UR  - https://doi.org/10.5802/tsg.269
DO  - 10.5802/tsg.269
LA  - fr
ID  - TSG_2008-2009__27__17_0
ER  - 
de Cornulier, Yves. Géométries modèles de dimension trois. Séminaire de théorie spectrale et géométrie, Tome 27 (2008-2009), pp. 17-43. doi : 10.5802/tsg.269. http://archive.numdam.org/articles/10.5802/tsg.269/

[1] Bessières, L.; Besson, G.; Boileau, M.; Maillot, S.; Porti, J. Geometrisation of 3-manifolds Livre en préparation (juin 2009)

[2] Bessières, Laurent Conjecture de Poincaré : la preuve de R. Hamilton et G. Perelman, Gaz. Math. (2005) no. 106, pp. 7-35 | MR 2191421 | Zbl 1129.53045

[3] Borel, Armand Compact Clifford-Klein forms of symmetric spaces, Topology, Volume 2 (1963), pp. 111-122 | MR 146301 | Zbl 0116.38603

[4] Kleiner, Bruce; Lott, John Notes on Perelman’s papers, Geom. Topol., Volume 12 (2008) no. 5, pp. 2587-2855 | MR 2460872

[5] Morgan, John W. Recent progress on the Poincaré conjecture and the classification of 3-manifolds, Bull. Amer. Math. Soc. (N.S.), Volume 42 (2005) no. 1, p. 57-78 (electronic) | MR 2115067 | Zbl 1100.57016

[6] Mostow, G. D. Self-adjoint groups, Ann. of Math. (2), Volume 62 (1955), pp. 44-55 | MR 69830 | Zbl 0065.01404

[7] Perelman, Grigori The entropy formula for the Ricci flow and its geometric applications (2002) (arXiv/0211.5159) | Zbl 1130.53001

[8] Perelman, Grigori Finite extinction time for the solutions to the Ricci flow on certain three-manifolds (2003) (arXiv/0307.5245) | Zbl 1130.53003

[9] Perelman, Grigori Ricci flow with surgery on three-manifolds (2003) (arXiv/0303.5109) | Zbl 1130.53002

[10] Scott, Peter The Geometries of 3-Manifolds, Bull. London Math. Soc., Volume 15 (1983) no. 5, pp. 401-487 | MR 705527 | Zbl 0561.57001

[11] Thurston, William P. The Geometry and Topology of Three-Manifolds (1980) (Princeton University Notes)

[12] Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.), Volume 6 (1982) no. 3, pp. 357-381 | MR 648524 | Zbl 0496.57005

[13] Thurston, William P. Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997 (Edited by Silvio Levy) | MR 1435975 | Zbl 0873.57001

Cité par Sources :