Mots clés : géométrie CR, fibré de Cartan, fibré des tracteurs, connexion de Cartan
@article{TSG_2008-2009__27__131_0, author = {Herzlich, Marc}, title = {Une approche p\'edestre de quelques aspects locaux des vari\'et\'es de {Cauchy-Riemann}}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {131--141}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {27}, year = {2008-2009}, doi = {10.5802/tsg.273}, mrnumber = {2799149}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/tsg.273/} }
TY - JOUR AU - Herzlich, Marc TI - Une approche pédestre de quelques aspects locaux des variétés de Cauchy-Riemann JO - Séminaire de théorie spectrale et géométrie PY - 2008-2009 SP - 131 EP - 141 VL - 27 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/tsg.273/ DO - 10.5802/tsg.273 LA - fr ID - TSG_2008-2009__27__131_0 ER -
%0 Journal Article %A Herzlich, Marc %T Une approche pédestre de quelques aspects locaux des variétés de Cauchy-Riemann %J Séminaire de théorie spectrale et géométrie %D 2008-2009 %P 131-141 %V 27 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/tsg.273/ %R 10.5802/tsg.273 %G fr %F TSG_2008-2009__27__131_0
Herzlich, Marc. Une approche pédestre de quelques aspects locaux des variétés de Cauchy-Riemann. Séminaire de théorie spectrale et géométrie, Tome 27 (2008-2009), pp. 131-141. doi : 10.5802/tsg.273. http://archive.numdam.org/articles/10.5802/tsg.273/
[1] David M. J. Calderbank, Tammo Diemer, and Vladimír Souček, Ricci-corrected derivatives and invariant differential operators, Differential Geom. Appl. 23 (2005), 149–175. | MR | Zbl
[2] Andreas Čap and A. Rod Gover, CR-tractors and the Fefferman space, Indiana Univ. Math. J. 57 (2008), 2519–2570. | MR | Zbl
[3] Andreas Čap and Hermann Schichl, Parabolic geometries and canonical Cartan connections, Hokkaido Math. J. 29 (2000), 453–505. | MR | Zbl
[4] Élie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 1 (1932), 333–354. | Numdam | MR | Zbl
[5] Elie Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes, Ann. Mat. Pura Appl. 11 (1933), 17–90. | MR | Zbl
[6] Shiing-Shen Chern and Jürgen K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271, Erratum, Acta Math. 150 (1983), 3–4. | Zbl
[7] Liana David, Weyl connections and curvature properties of CR manifolds, Ann. Global Anal. Geom. 26 (2004), 59–72. | MR | Zbl
[8] Paul Gauduchon, Connexion canonique et structures de Weyl en géométrie conforme, 1990, non publié.
[9] A. Rod Gover and C. Robin Graham, CR invariant powers of the sub-Laplacian, J. Reine Angew. Math. 583 (2005), 1–27. | MR | Zbl
[10] Marc Herzlich, The canonical Cartan bundle and connection in CR geometry, Math. Proc. Cambridge Philos. Soc. 146 (2009), 415–434. | MR | Zbl
[11] Kengo Hirachi, Scalar pseudo-Hermitian invariants and the Szegő kernel on three-dimensional CR manifolds, Complex geometry (Osaka, 1990), Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, pp. 67–76. | MR | Zbl
[12] Howard Jacobowitz, The canonical bundle and realizable CR hypersurfaces, Pacific J. Math. 127 (1987), 91–101. | MR | Zbl
[13] David Jerison and John M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom. 29 (1989), 303–343. | MR | Zbl
[14] Shoshichi Kobayashi, Transformation groups in differential geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995, reprint of the 1972 edition. | MR | Zbl
[15] John M. Lee, Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110 (1988), 157–178. | MR | Zbl
[16] John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987), 37–91. | MR | Zbl
[17] Robert W. Sharpe, Differential geometry, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 1997. | MR | Zbl
[18] Noboru Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book-Store Co. Ltd., Tokyo, 1975, Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9. | MR | Zbl
[19] Sidney M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25–41. | MR | Zbl
Cité par Sources :