Le but de ce survol est de présenter les modules combinatoires récemment utilisés pour étudier les propriétés quasi-conformes des bords des groupes hyperboliques. Dans un premier temps, on rappellera quelques résultats et questions de rigidité bien connus qui ont motivés l’introduction de ces outils. Puis on définira les modules combinatoires et la propriété de Loewner combinatoire qui offrent une nouvelle approche pour résoudre des problèmes ouverts depuis longtemps. Enfin, on décrira des applications concrètes de ces outils à travers quelques résultats récents et questions ouvertes.
Mots clés : Bord d’un groupe hyperbolique, analyse quasi-conforme, modules combinatoires
@article{TSG_2014-2015__32__73_0, author = {Clais, Antoine}, title = {Propri\'et\'es combinatoires du bord d{\textquoteright}un groupe hyperbolique}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {73--96}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, year = {2014-2015}, doi = {10.5802/tsg.304}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/tsg.304/} }
TY - JOUR AU - Clais, Antoine TI - Propriétés combinatoires du bord d’un groupe hyperbolique JO - Séminaire de théorie spectrale et géométrie PY - 2014-2015 SP - 73 EP - 96 VL - 32 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/tsg.304/ DO - 10.5802/tsg.304 LA - fr ID - TSG_2014-2015__32__73_0 ER -
%0 Journal Article %A Clais, Antoine %T Propriétés combinatoires du bord d’un groupe hyperbolique %J Séminaire de théorie spectrale et géométrie %D 2014-2015 %P 73-96 %V 32 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/tsg.304/ %R 10.5802/tsg.304 %G fr %F TSG_2014-2015__32__73_0
Clais, Antoine. Propriétés combinatoires du bord d’un groupe hyperbolique. Séminaire de théorie spectrale et géométrie, Tome 32 (2014-2015), pp. 73-96. doi : 10.5802/tsg.304. http://archive.numdam.org/articles/10.5802/tsg.304/
[1] Sphere boundaries of hyperbolic groups (2016) (https://arxiv.org/abs/1512.00866) | MR
[2] Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992, pp. xiv+330 | DOI | MR | Zbl
[3] Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math., Volume 150 (2002) no. 1, pp. 127-183 | DOI | MR | Zbl
[4] Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol., Volume 9 (2005), pp. 219-246 | DOI | MR | Zbl
[5] Mostow type rigidity theorems (to appear in Handbook of Group Actions)
[6] Immeubles hyperboliques, dimension conforme et rigidité de Mostow, Geom. Funct. Anal., Volume 7 (1997) no. 2, pp. 245-268 | DOI | MR | Zbl
[7] Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn., Volume 7 (2013) no. 1, pp. 39-107 | DOI | MR
[8] Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc., Volume 127 (1999) no. 8, pp. 2315-2324 | DOI | MR | Zbl
[9] Rigidity of quasi-isometries for some hyperbolic buildings, Comment. Math. Helv., Volume 75 (2000) no. 4, pp. 701-736 | DOI | MR | Zbl
[10] Cohomologie et espaces de Besov, J. Reine Angew. Math., Volume 558 (2003), pp. 85-108 | DOI | MR | Zbl
[11] Cut points and canonical splittings of hyperbolic groups, Acta Math., Volume 180 (1998) no. 2, pp. 145-186 | DOI | MR | Zbl
[12] A dual interpretation of the Gromov-Thurston proof of Mostow rigidity and volume rigidity for representations of hyperbolic lattices, Trends in harmonic analysis (Springer INdAM Ser.), Volume 3, Springer, Milan, 2013, pp. 47-76 | DOI | MR | Zbl
[13] Recognizing constant curvature discrete groups in dimension , Trans. Amer. Math. Soc., Volume 350 (1998) no. 2, pp. 809-849 | DOI | MR | Zbl
[14] On the conformal gauge of a compact metric space, Ann. Sci. Éc. Norm. Supér. (4), Volume 46 (2013) no. 3, p. 495-548 (2013) | MR | Zbl
[15] Combinatorial Modulus on Boundary of Right-Angled Hyperbolic Buildings, Anal. Geom. Metr. Spaces, Volume 4 (2016), pp. Art. 1 | DOI | MR
[16] Conformal dimension on boundary of right-angled hyperbolic buildings (2016) (https://arxiv.org/abs/1602.08611) | MR
[17] Géométrie et théorie des groupes, Lecture Notes in Mathematics, 1441, Springer-Verlag, Berlin, 1990, pp. x+165 (Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups], With an English summary) | MR | Zbl
[18] Espaces métriques hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) (Progr. Math.), Volume 83, Birkhäuser Boston, Boston, MA, 1990, pp. 27-45 | DOI | Zbl
[19] Hyperbolic groups, Essays in group theory (Math. Sci. Res. Inst. Publ.), Volume 8, Springer, New York, 1987, pp. 75-263 | DOI | MR | Zbl
[20] Empilements de cercles et modules combinatoires, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 6, pp. 2175-2222 | Numdam | MR | Zbl
[21] Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités [d’après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner], Astérisque (2009) no. 326, p. Exp. No. 993, ix, 321-362 (2010) (Séminaire Bourbaki. Vol. 2007/2008) | Numdam | MR | Zbl
[22] Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001, pp. x+140 | DOI | MR | Zbl
[23] Quasiconformal maps in metric spaces with controlled geometry, Acta Math., Volume 181 (1998) no. 1, pp. 1-61 | DOI | MR | Zbl
[24] Conformal Assouad dimension and modulus, Geom. Funct. Anal., Volume 14 (2004) no. 6, pp. 1278-1321 | DOI | MR | Zbl
[25] The asymptotic geometry of negatively curved spaces : uniformization, geometrization and rigidity, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 743-768 | MR | Zbl
[26] Rigidity of hyperbolic -manifolds : a survey, Geom. Dedicata, Volume 124 (2007), pp. 143-152 | DOI | MR | Zbl
[27] On the conformal capacity in space, J. Math. Mech., Volume 8 (1959), pp. 411-414 | MR | Zbl
[28] Spaces and groups with conformal dimension greater than one, Duke Math. J., Volume 153 (2010) no. 2, pp. 211-227 | DOI | MR | Zbl
[29] Conformal dimension via subcomplexes for small cancellation and random groups (2014) (to appear in Math. Annalen., https://arxiv.org/abs/1409.0802) | MR
[30] Conformal dimension, University Lecture Series, 54, American Mathematical Society, Providence, RI, 2010, pp. xiv+143 (Theory and application) | MR | Zbl
[31] Modulus and Poincaré inequalities on non-self-similar Sierpiński carpets, Geom. Funct. Anal., Volume 23 (2013) no. 3, pp. 985-1034 | DOI | MR | Zbl
[32] Criterion for Cannon’s conjecture, Geom. Funct. Anal., Volume 23 (2013) no. 3, pp. 1035-1061 | DOI | MR | Zbl
[33] Quasi-conformal mappings in -space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. (1968) no. 34, pp. 53-104 | Numdam | MR | Zbl
[34] Dimension conforme et sphère à l’infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math., Volume 14 (1989) no. 2, pp. 177-212 | MR | Zbl
[35] Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2), Volume 129 (1989) no. 1, pp. 1-60 | DOI | MR | Zbl
[36] Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. (2), Volume 54 (1996) no. 1, pp. 50-74 | DOI | MR | Zbl
[37] On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics : Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) (Ann. of Math. Stud.), Volume 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465-496 | MR | Zbl
[38] The Geometry and Topology of Three-Manifolds (1980) (Notes of Princeton University, http://library.msri.org/books/gt3m/)
[39] Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math., Volume 23 (1998) no. 2, pp. 525-548 | MR | Zbl
[40] Lectures on -dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971, pp. xiv+144 | MR
[41] Quasi-Möbius maps, J. Analyse Math., Volume 44 (1984/85), pp. 218-234 | DOI | MR
[42] Quasi-isometric rigidity of Fuchsian buildings, Topology, Volume 45 (2006) no. 1, pp. 101-169 | DOI | MR | Zbl
Cité par Sources :