Calcul formel pour les équations différentielles linéaires
Journées mathématiques X-UPS, Calcul formel (1997), pp. 31-53.
Publié le :
DOI : 10.5802/xups.1997-02
Weil, Jacques-Arthur 1

1 Département de mathématiques, Faculté des sciences, 123 Avenue Albert Thomas, F-87060 Limoges
@incollection{XUPS_1997____31_0,
     author = {Weil, Jacques-Arthur},
     title = {Calcul formel pour les~\'equations~diff\'erentielles~lin\'eaires},
     booktitle = {Calcul formel},
     series = {Journ\'ees math\'ematiques X-UPS},
     pages = {31--53},
     publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique},
     year = {1997},
     doi = {10.5802/xups.1997-02},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/xups.1997-02/}
}
TY  - JOUR
AU  - Weil, Jacques-Arthur
TI  - Calcul formel pour les équations différentielles linéaires
JO  - Journées mathématiques X-UPS
PY  - 1997
SP  - 31
EP  - 53
PB  - Les Éditions de l’École polytechnique
UR  - http://archive.numdam.org/articles/10.5802/xups.1997-02/
DO  - 10.5802/xups.1997-02
LA  - fr
ID  - XUPS_1997____31_0
ER  - 
%0 Journal Article
%A Weil, Jacques-Arthur
%T Calcul formel pour les équations différentielles linéaires
%J Journées mathématiques X-UPS
%D 1997
%P 31-53
%I Les Éditions de l’École polytechnique
%U http://archive.numdam.org/articles/10.5802/xups.1997-02/
%R 10.5802/xups.1997-02
%G fr
%F XUPS_1997____31_0
Weil, Jacques-Arthur. Calcul formel pour les équations différentielles linéaires. Journées mathématiques X-UPS, Calcul formel (1997), pp. 31-53. doi : 10.5802/xups.1997-02. http://archive.numdam.org/articles/10.5802/xups.1997-02/

[1] Abramov, S. A.; Kvansenko, K. Yu. Fast algorithms to search for the rational solutions of linear differential equations with polynomial coefficients, ISSAC ’91. Proceedings of the 1991 international symposium on symbolic and algebraic computation (Bonn, 1991), ACM Press, New York, NY, 1991, pp. 267-270 | DOI | Zbl

[2] Abramov, Sergei A.; Bronstein, Manuel; Petkovšek, Marko On polynomial solutions of linear operator equations, ISSAC ’95. Proceedings of the 1995 international symposium on symbolic and algebraic computation, Association for Computing Machinery, New York, NY, 1995, p. 290–296 | DOI | Zbl

[3] Beukers, Frits Differential Galois theory, From number theory to physics (Les Houches, 1989), Springer, Berlin, 1992, pp. 413-439 | DOI | MR | Zbl

[4] Bronstein, Manuel On solutions of linear ordinary differential equations in their coefficient field, J. Symb. Comput., Volume 13 (1992) no. 4, pp. 413-439 | DOI | MR | Zbl

[5] Bronstein, Manuel Symbolic integration. I. Transcendental Functions, Algorithms and Computation in Math., 1, Springer-Verlag, Berlin, 2005

[6] Bronstein, Manuel; Mulders, Thom; Weil, Jacques-Arthur On symmetric powers of differential operators, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), ACM, New York, 1997, pp. 156-163 | DOI | Zbl

[7] Fakler, Winfried On second order homogeneous linear differential equations with Liouvillian solutions, Theoret. Comput. Sci., Volume 187 (1997) no. 1-2, pp. 27-48 Computer algebra (Saint-Louis, 1996) | DOI | MR | Zbl

[8] Geddes, K. O.; Czapor, S. R.; Labahn, G. Algorithms for computer algebra, Kluwer Academic Publishers, Boston, MA, 1992 | DOI

[9] Hendriks, Peter A.; van der Put, Marius Galois action on solutions of a differential equation, J. Symb. Comput., Volume 19 (1995) no. 6, pp. 559-576 | DOI | MR | Zbl

[10] Kaplansky, Irving An introduction to differential algebra., Hermann, Paris, 1996

[11] Kolchin, E. R. Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. (2), Volume 49 (1948), pp. 1-42 | DOI | MR | Zbl

[12] Kolchin, Ellis Direct and inverse problems in differential Galois theory, Selected works of Ellis Kolchin with commentary, American Mathematical Society, Providence, RI, 1999 | Zbl

[13] Kovacic, Jerald J. An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Comput., Volume 2 (1986) no. 1, pp. 3-43 | DOI | MR | Zbl

[14] Marotte, F. Les équations différentielles linéaires et la théorie des groupes., Ann. Fac. Sci. Toulouse Math. (1), Volume 12 (1898), p. h1-h92 | DOI | Numdam | MR | Zbl

[15] van der Put, Marius Symbolic analysis of differential equations, Some tapas of computer algebra, Springer, Berlin, 1999, pp. 208-236 | DOI | Zbl

[16] Rosenlicht, Maxwell Integration in finite terms, Amer. Math. Monthly, Volume 79 (1972), pp. 963-972 | DOI | MR | Zbl

[17] Singer, Michael F. Liouvillian solutions of nth order homogeneous linear differential equations, Amer. J. Math., Volume 103 (1981) no. 4, pp. 661-682 | DOI | Zbl

[18] Singer, Michael F. An outline of differential Galois theory, Computer algebra and differential equations (Comput. Math. Appl.), Academic Press, London, 1990, pp. 3-57 | MR

[19] Singer, Michael F.; Ulmer, Felix Galois groups of second and third order linear differential equations, J. Symbolic Comput., Volume 16 (1993) no. 1, pp. 9-36 | DOI | MR | Zbl

[20] Singer, Michael F.; Ulmer, Felix Liouvillian and algebraic solutions of second and third order linear differential equations, J. Symbolic Comput., Volume 16 (1993) no. 1, pp. 37-73 | DOI | MR | Zbl

[21] Singer, Michael F.; Ulmer, Felix Linear differential equations and products of linear forms, J. Pure Appl. Algebra, Volume 117/118 (1997), pp. 549-563 Algorithms for algebra (Eindhoven, 1996) | DOI | MR | Zbl

[22] Ulmer, Felix; Weil, Jacques-Arthur Note on Kovacic’s algorithm, J. Symbolic Comput., Volume 22 (1996) no. 2, pp. 179-200 | DOI | MR | Zbl

[23] Weil, J.-A.; Germa-Péladan, A.; Ollivier, F.; Shih, J.A. Quelques approches algébriques effectives des phénomènes différentiels, Images des Mathématiques (Murat, F.; Colliot-Thélène, J.-L., eds.), Éditions du CNRS, 1995

Cité par Sources :