Pavages du plan
Journées mathématiques X-UPS, Pavages (2001), pp. 1-54.

Ce texte a deux objectifs :

– D’une part, donner un survol sans démonstration de la théorie classique de Bieberbach des pavages euclidiens périodiques ainsi que de ses analogues hyperboliques, affines et projectifs.

– D’autre part, exhiber quelques exemples concrets de pavages périodiques et apériodiques en dimension 2 dans le contexte euclidien, mais aussi dans les contextes hyperboliques, affines et projectifs. En particulier, nous construisons des pavages affines du plan à l’aide d’heptagones affinement réguliers comme dans la fleur ci-dessous.

We survey without proofs Bieberbach’s theory for euclidean periodic tilings and its hyperbolic, affine and projective analogs.

We also describe explicit examples of periodic and aperiodic 2-dimensional tilings in the euclidean setting as well as in the hyperbolic, the affine and the projective setting.

For instance, we construct aperiodic affine tilings of the plane with affinely regular heptagons as in the flower below.

Publié le :
DOI : 10.5802/xups.2001-01
Benoist, Yves 1

1 École Normale Supérieure-CNRS, 45 rue d’Ulm, 75230 Paris
@incollection{XUPS_2001____1_0,
     author = {Benoist, Yves},
     title = {Pavages du plan},
     booktitle = {Pavages},
     series = {Journ\'ees math\'ematiques X-UPS},
     pages = {1--54},
     publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique},
     year = {2001},
     doi = {10.5802/xups.2001-01},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/xups.2001-01/}
}
TY  - JOUR
AU  - Benoist, Yves
TI  - Pavages du plan
JO  - Journées mathématiques X-UPS
PY  - 2001
SP  - 1
EP  - 54
PB  - Les Éditions de l’École polytechnique
UR  - http://archive.numdam.org/articles/10.5802/xups.2001-01/
DO  - 10.5802/xups.2001-01
LA  - fr
ID  - XUPS_2001____1_0
ER  - 
%0 Journal Article
%A Benoist, Yves
%T Pavages du plan
%J Journées mathématiques X-UPS
%D 2001
%P 1-54
%I Les Éditions de l’École polytechnique
%U http://archive.numdam.org/articles/10.5802/xups.2001-01/
%R 10.5802/xups.2001-01
%G fr
%F XUPS_2001____1_0
Benoist, Yves. Pavages du plan. Journées mathématiques X-UPS, Pavages (2001), pp. 1-54. doi : 10.5802/xups.2001-01. http://archive.numdam.org/articles/10.5802/xups.2001-01/

[1] Abels, Herbert; Margulis, Grigori A.; Soifer, Grigori A. Properly discontinuous groups of affine transformations with orthogonal linear part, C. R. Acad. Sci. Paris Sér. I Math., Volume 324 (1997) no. 3, pp. 253-258 | DOI | MR | Zbl

[2] Benoist, Yves Une nilvariété non affine, C. R. Acad. Sci. Paris Sér. I Math., Volume 315 (1992) no. 9, pp. 983-986 | MR | Zbl

[3] Benoist, Yves Tores affines, Crystallographic groups and their generalizations (Kortrijk, 1999) (Contemp. Math.), Volume 262, American Mathematical Society, Providence, RI, 2000, pp. 1-37 | DOI | MR | Zbl

[4] Benoist, Yves Convexes divisibles, C. R. Acad. Sci. Paris Sér. I Math., Volume 332 (2001) no. 5, pp. 387-390 | DOI | MR | Zbl

[5] Benzecri, J. P. Variétés localement affines, Séminaire de topologie et géométrie différentielle, Volume 2, Secrétariat mathématique, 1958-1960 (Exp. no. 7, 35 p.) | Zbl

[6] Berger, Robert The undecidability of the domino problem, Mem. Amer. Math. Soc., Volume 66 (1966), p. 72 | MR | Zbl

[7] Burde, Dietrich Affine structures on nilmanifolds, Internat. J. Math., Volume 7 (1996) no. 5, pp. 599-616 | DOI | MR | Zbl

[8] Carrière, Yves Un survol de la théorie des variétés affines, Séminaire de théorie spectrale et géométrie, Volume 6, Institut Fourier, Grenoble, 1987-1988, pp. 9-22 | DOI | Zbl

[9] Choi, Suhyoung; Goldman, William M. Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc., Volume 118 (1993) no. 2, pp. 657-661 | DOI | MR | Zbl

[10] Conway, John H.; Delgado Friedrichs, Olaf; Huson, Daniel H.; Thurston, William P. On three-dimensional space groups, Beitr. Algebra Geom., Volume 42 (2001) no. 2, pp. 475-507 | MR | Zbl

[11] Dekimpe, Karel; Igodt, Paul Polycyclic-by-finite groups admit a bounded-degree polynomial structure, Invent. Math., Volume 129 (1997) no. 1, pp. 121-140 | DOI | MR | Zbl

[12] Ernst, Bruno Le miroir magique de M.C. Escher, Le Chêne, Paris, 1976

[13] Grünbaum, Branko; Shephard, G. C. Tilings and patterns, W. H. Freeman and Company, New York, 1987

[14] International tables for crystallography. Vol. A (Hahn, Theo, ed.), D. Reidel Publishing Co., Dordrecht, 1983 (Space-group symmetry) | Zbl

[15] Margulis, G. A.; Mozes, S. Aperiodic tilings of the hyperbolic plane by convex polygons, Israel J. Math., Volume 107 (1998), pp. 319-325 | DOI | MR | Zbl

[16] Nagano, Tadashi; Yagi, Katsumi The affine structures on the real two-torus. I, Osaka Math. J., Volume 11 (1974), pp. 181-210 http://projecteuclid.org/euclid.ojm/1200694718 | MR | Zbl

[17] Penrose, Roger Pentaplexity. A class of non-periodic tilings of the plane, Math. Intell., Volume 2 (1979), pp. 32-37 | DOI | Zbl

[18] Penrose, Roger Shadows of the mind. A search for the missing science of consciousness, Oxford University Press, Oxford, 1995

[19] Senechal, Marjorie Quasicrystals and geometry, Cambridge University Press, Cambridge, 1995

Cité par Sources :