Amibes non archimédiennes
Journées mathématiques X-UPS, Géométrie tropicale (2008), pp. 91-121.
Publié le :
DOI : 10.5802/xups.2008-03
Teissier, Bernard 1

1 Équipe Géométrie et Dynamique, Institut Mathématique de Jussieu, 175 rue du Chevaleret, 75013 Paris, France
@incollection{XUPS_2008____91_0,
     author = {Teissier, Bernard},
     title = {Amibes non archim\'ediennes},
     booktitle = {G\'eom\'etrie tropicale},
     series = {Journ\'ees math\'ematiques X-UPS},
     pages = {91--121},
     publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique},
     year = {2008},
     doi = {10.5802/xups.2008-03},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/xups.2008-03/}
}
TY  - JOUR
AU  - Teissier, Bernard
TI  - Amibes non archimédiennes
JO  - Journées mathématiques X-UPS
PY  - 2008
SP  - 91
EP  - 121
PB  - Les Éditions de l’École polytechnique
UR  - http://archive.numdam.org/articles/10.5802/xups.2008-03/
DO  - 10.5802/xups.2008-03
LA  - fr
ID  - XUPS_2008____91_0
ER  - 
%0 Journal Article
%A Teissier, Bernard
%T Amibes non archimédiennes
%J Journées mathématiques X-UPS
%D 2008
%P 91-121
%I Les Éditions de l’École polytechnique
%U http://archive.numdam.org/articles/10.5802/xups.2008-03/
%R 10.5802/xups.2008-03
%G fr
%F XUPS_2008____91_0
Teissier, Bernard. Amibes non archimédiennes. Journées mathématiques X-UPS, Géométrie tropicale (2008), pp. 91-121. doi : 10.5802/xups.2008-03. http://archive.numdam.org/articles/10.5802/xups.2008-03/

[1] Bieri, Robert; Groves, J.R.J. The geometry of the set of characters induced by valuations, J. reine angew. Math., Volume 347 (1984), pp. 168-195 | MR | Zbl

[2] Bogart, T.; Jensen, A.; Speyer, D.; Sturmfels, B.; Thomas, R. Computing tropical varieties, J. Symbolic Comput., Volume 42 (2007) no. 1-2, pp. 54-73 | DOI | MR | Zbl

[3] Brezis, Haïm Analyse fonctionnelle, théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983, xiv+234 pages | MR

[4] Brugallé, Erwan Géométries énumératives complexe, réelle et tropicale, Géométrie tropicale (Journées X-UPS), Les Éditions de l’École polytechnique, Palaiseau, 2008 (ce volume) | DOI

[5] Einsiedler, Manfred; Kapranov, Mikhail; Lind, Douglas Non-Archimedean amoebas and tropical varieties, J. reine angew. Math., Volume 601 (2006), pp. 139-157 | DOI | MR | Zbl

[6] Fenchel, W. On conjugate convex functions, Canad. J. Math., Volume 1 (1949), pp. 73-77 | DOI | MR | Zbl

[7] Forsberg, Mikael; Passare, Mikael; Tsikh, August Laurent determinants and arrangements of hyperplane amoebas, Adv. Math., Volume 151 (2000) no. 1, pp. 45-70 | DOI | MR | Zbl

[8] Itenberg, Ilia Introduction à la géométrie tropicale, Géométrie tropicale (Journées X-UPS), Les Éditions de l’École polytechnique, Palaiseau, 2008 (ce volume) | DOI

[9] Itenberg, Ilia; Mikhalkin, Grigory; Shustin, Eugenii Tropical algebraic geometry, Oberwolfach Seminars, 35, Birkhäuser Verlag, Basel, 2007 | MR

[10] Jensen, A.N.; Markwig, Hannah; Markwig, Thomas An algorithm for lifting points in a tropical variety, Collect. Math., Volume 59 (2008) no. 2, pp. 129-165 | DOI | MR | Zbl

[11] Kedlaya, Kiran The algebraic closure of the power series field in positive characteristic, Proc. Amer. Math. Soc., Volume 129 (2001) no. 12, pp. 3461-3470 | DOI | MR | Zbl

[12] Mikhalkin, Grigory Amoebas of algebraic varieties and tropical geometry, Different faces of geometry (Int. Math. Ser. (N. Y.)), Volume 3, Kluwer/Plenum, New York, 2004, pp. 257-300 | DOI | MR | Zbl

[13] Mikhalkin, Grigory Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology, Volume 43 (2004) no. 5, pp. 1035-1065 | DOI | MR | Zbl

[14] Moreau, J-J. Étude locale d’une fonctionnelle convexe, Université de Montpellier, Montpellier, 1963 (25 pp)

[15] Neumann, B.H. On ordered division rings, Trans. Amer. Math. Soc., Volume 66 (1949), pp. 202-252 | DOI | MR | Zbl

[16] Payne, Sam Fibers of tropicalization, Math. Z., Volume 262 (2009) no. 2, pp. 301-311 Erratum : Ibid. 272 (2012), no. 3-4, p. 1403–1406 | DOI | MR | Zbl

[17] Ribenboim, Paulo Fields : algebraically closed and others, Manuscripta Math., Volume 75 (1992) no. 2, pp. 115-150 | DOI | MR | Zbl

[18] Richter-Gebert, Jürgen; Sturmfels, Bernd; Theobald, Thorsten First steps in tropical geometry, Idempotent mathematics and mathematical physics (Contemp. Math.), Volume 377, American Mathematical Society, Providence, RI, 2005, pp. 289-317 | DOI | MR | Zbl

[19] Rullgård, H. Polynomial amoebas and convexity (2001) (Prépublication, Université de Stockholm)

[20] Speyer, David; Sturmfels, Bernd The tropical Grassmannian, Adv. Geom., Volume 4 (2004) no. 3, pp. 389-411 | DOI | MR | Zbl

Cité par Sources :