@incollection{XUPS_2008____91_0, author = {Teissier, Bernard}, title = {Amibes non archim\'ediennes}, booktitle = {G\'eom\'etrie tropicale}, series = {Journ\'ees math\'ematiques X-UPS}, pages = {91--121}, publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique}, year = {2008}, doi = {10.5802/xups.2008-03}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/xups.2008-03/} }
Teissier, Bernard. Amibes non archimédiennes. Journées mathématiques X-UPS, Géométrie tropicale (2008), pp. 91-121. doi : 10.5802/xups.2008-03. http://archive.numdam.org/articles/10.5802/xups.2008-03/
[1] The geometry of the set of characters induced by valuations, J. reine angew. Math., Volume 347 (1984), pp. 168-195 | MR | Zbl
[2] Computing tropical varieties, J. Symbolic Comput., Volume 42 (2007) no. 1-2, pp. 54-73 | DOI | MR | Zbl
[3] Analyse fonctionnelle, théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983, xiv+234 pages | MR
[4] Géométries énumératives complexe, réelle et tropicale, Géométrie tropicale (Journées X-UPS), Les Éditions de l’École polytechnique, Palaiseau, 2008 (ce volume) | DOI
[5] Non-Archimedean amoebas and tropical varieties, J. reine angew. Math., Volume 601 (2006), pp. 139-157 | DOI | MR | Zbl
[6] On conjugate convex functions, Canad. J. Math., Volume 1 (1949), pp. 73-77 | DOI | MR | Zbl
[7] Laurent determinants and arrangements of hyperplane amoebas, Adv. Math., Volume 151 (2000) no. 1, pp. 45-70 | DOI | MR | Zbl
[8] Introduction à la géométrie tropicale, Géométrie tropicale (Journées X-UPS), Les Éditions de l’École polytechnique, Palaiseau, 2008 (ce volume) | DOI
[9] Tropical algebraic geometry, Oberwolfach Seminars, 35, Birkhäuser Verlag, Basel, 2007 | MR
[10] An algorithm for lifting points in a tropical variety, Collect. Math., Volume 59 (2008) no. 2, pp. 129-165 | DOI | MR | Zbl
[11] The algebraic closure of the power series field in positive characteristic, Proc. Amer. Math. Soc., Volume 129 (2001) no. 12, pp. 3461-3470 | DOI | MR | Zbl
[12] Amoebas of algebraic varieties and tropical geometry, Different faces of geometry (Int. Math. Ser. (N. Y.)), Volume 3, Kluwer/Plenum, New York, 2004, pp. 257-300 | DOI | MR | Zbl
[13] Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology, Volume 43 (2004) no. 5, pp. 1035-1065 | DOI | MR | Zbl
[14] Étude locale d’une fonctionnelle convexe, Université de Montpellier, Montpellier, 1963 (25 pp)
[15] On ordered division rings, Trans. Amer. Math. Soc., Volume 66 (1949), pp. 202-252 | DOI | MR | Zbl
[16] Fibers of tropicalization, Math. Z., Volume 262 (2009) no. 2, pp. 301-311 Erratum : Ibid. 272 (2012), no. 3-4, p. 1403–1406 | DOI | MR | Zbl
[17] Fields : algebraically closed and others, Manuscripta Math., Volume 75 (1992) no. 2, pp. 115-150 | DOI | MR | Zbl
[18] First steps in tropical geometry, Idempotent mathematics and mathematical physics (Contemp. Math.), Volume 377, American Mathematical Society, Providence, RI, 2005, pp. 289-317 | DOI | MR | Zbl
[19] Polynomial amoebas and convexity (2001) (Prépublication, Université de Stockholm)
[20] The tropical Grassmannian, Adv. Geom., Volume 4 (2004) no. 3, pp. 389-411 | DOI | MR | Zbl
Cité par Sources :