Depuis les travaux de Henri Poincaré (1892) et ensuite Birkhoff, Anosov (1967), Ruelle etc. il est apparu que les trajectoires issues de lois déterministes mais possédant une « forte sensibilité aux conditions initiales » semblent imprévisibles et qu’il y a des propriétés aléatoires émergeantes. On parle de « chaos déterministe en mécanique classique ». On présentera un modèle assez concret de dynamique chaotique que sont les « billards dispersifs ». On établira les propriétés mathématiques du chaos (mélange et ergodicité) sur un modèle similaire mais plus simple appelé « application du chat d’Arnold ».
La problématique du chaos quantique est d’étudier la dynamique des ondes quantiques dans un système dont la dynamique classique associée est chaotique comme décrite plus haut. Plus précisément on souhaite comprendre l’évolution des ondes mais aussi la structure et la répartition spatiale des ondes stationnaires. On posera ces questions en montrant quelques exemples numériques intrigants qui serviront à introduire les exposés suivants. Par exemple le « théorème d’ergodicité quantique » (1974) établit que lorsque la dynamique classique est ergodique alors presque toutes les ondes quantiques stationnaires sont équi-réparties sur l’espace.
@incollection{XUPS_2014____1_0, author = {Faure, Fr\'ed\'eric}, title = {Introduction au chaos classique et~au~chaos quantique}, booktitle = {Chaos en m\'ecanique quantique}, series = {Journ\'ees math\'ematiques X-UPS}, pages = {1--58}, publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique}, year = {2014}, doi = {10.5802/xups.2014-01}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/xups.2014-01/} }
TY - JOUR AU - Faure, Frédéric TI - Introduction au chaos classique et au chaos quantique JO - Journées mathématiques X-UPS PY - 2014 SP - 1 EP - 58 PB - Les Éditions de l’École polytechnique UR - http://archive.numdam.org/articles/10.5802/xups.2014-01/ DO - 10.5802/xups.2014-01 LA - fr ID - XUPS_2014____1_0 ER -
Faure, Frédéric. Introduction au chaos classique et au chaos quantique. Journées mathématiques X-UPS, Chaos en mécanique quantique (2014), pp. 1-58. doi : 10.5802/xups.2014-01. http://archive.numdam.org/articles/10.5802/xups.2014-01/
[AN07] Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, Ann. Inst. Fourier (Grenoble), Volume 57 (2007) no. 7, pp. 2465-2523 | DOI | Numdam | MR | Zbl
[Ana08] Entropy and the localization of eigenfunctions, Ann. of Math. (2), Volume 168 (2008) no. 2, pp. 435-475 | DOI | MR | Zbl
[Ana14] Le théorème d’ergodicité quantique, Chaos en mécanique quantique (Journées X-UPS), Les Éditions de l’École polytechnique, Palaiseau, 2014 (ce volume) | DOI
[Ano69] Geodesic flows on closed Riemann manifolds with negative curvature, Proceedings of the Steklov Institute of Math., 90, American Mathematical Society, Providence, R.I., 1969 | MR
[Arn76] Méthodes mathématiques de la mécanique classique, Éditions Mir, Moscou, 1976
[Bal00] Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000 | DOI | MR
[BDB96] Equipartition of the eigenfunctions of quantized ergodic maps on the torus, Comm. Math. Phys., Volume 178 (1996) no. 1, pp. 83-105 | DOI | MR | Zbl
[BGS84] Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett., Volume 52 (1984) no. 1, pp. 1-4 | DOI | MR | Zbl
[BJ89] Introduction to quantum mechanics, Longman, 1989
[BPLB13] Controlled double-slit electron diffraction, New Journal of Physics, Volume 15 (2013) no. 3, 033018 | DOI
[BS02] Introduction to dynamical systems, Cambridge University Press, Cambridge, 2002 | DOI | MR
[Can01] Lectures on symplectic geometry, Lect. Notes in Math., 1764, Springer-Verlag, Berlin, 2001 | DOI | MR
[CdV85] Ergodicité et fonctions propres du laplacien, Comm. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502 | DOI | MR
[CM06] Chaotic billiards, Math. Surveys and Monographs, 127, American Mathematical Society, Providence, RI, 2006 | DOI | MR
[Cou12] Théorie ergodique et systèmes dynamiques, Savoirs Actuels, EDP Sciences, Les Ulis ; CNRS Éditions, Paris, 2012 | MR
[Dav95] Spectral theory and differential operators, Cambridge Studies in Advanced Math., 42, Cambridge University Press, Cambridge, 1995 | DOI | MR
[Dav07] Linear operators and their spectra, Cambridge Studies in Advanced Math., 106, Cambridge University Press, Cambridge, 2007 | DOI | MR
[Dol98] On decay of correlations in Anosov flows, Ann. of Math. (2), Volume 147 (1998) no. 2, pp. 357-390 | DOI | MR | Zbl
[Fal03] Fractal geometry. Mathematical foundations and applications, John Wiley & Sons, Inc., Hoboken, NJ, 2003 | DOI | MR
[Fau] Films d’animations d’ondes quantiques (http://bit.ly/1zuyexa)
[Fey63] Le cours de physique de Feynman, Mécanique quantique, 1963
[FK14] Le théoréme d’Egorov, Chaos en mécanique quantique (Journées X-UPS), Les Éditions de l’École polytechnique, Palaiseau, 2014 (ce volume) | DOI
[FN04] On the maximal scarring for quantum cat map eigenstates, Comm. Math. Phys., Volume 245 (2004) no. 1, pp. 201-214 | DOI | MR | Zbl
[FNDB03] Scarred eigenstates for quantum cat maps of minimal periods, Comm. Math. Phys., Volume 239 (2003) no. 3, pp. 449-492 | DOI | MR | Zbl
[FRS08] A semiclassical approach for Anosov diffeomorphisms and Ruelle resonances, Open Math. Journal, Volume 1 (2008), pp. 35-81 | DOI | Zbl
[FS11] Upper bound on the density of Ruelle resonances for Anosov flows, Comm. Math. Phys., Volume 308 (2011) no. 2, pp. 325-364 | DOI | MR | Zbl
[Gra03] Nombres premiers et chaos quantique, Gazette des Mathématiciens, Soc. Math. France (2003) no. 97, pp. 29-44 | MR | Zbl
[GS77] Geometric asymptotics, Math. Surveys, 14, American Mathematical Society, Providence, RI, 1977 | DOI | MR
[GS90] Symplectic techniques in physics, Cambridge University Press, Cambridge, 1990 | MR
[GS94] Microlocal analysis for differential operators. An introduction, London Math. Soc. Lect. Note Series, 196, Cambridge University Press, Cambridge, 1994 | DOI | MR
[GS11] Mathematical concepts of quantum mechanics, Universitext, Springer, Heidelberg, 2011 | DOI | MR
[Gut90] Chaos in classical and quantum mechanics, Interdisciplinary Applied Math., 1, Springer-Verlag, New York, 1990 | DOI | MR
[GVZJ91] Chaos et physique quantique (1991) | MR
[HS96] Introduction to spectral theory, with applications to Schrödinger operators, Applied Math. Sciences, 113, Springer-Verlag, New York, 1996 | DOI | MR
[KH95] Introduction to the modern theory of dynamical systems, Encyclopedia of Math. and its Appl., 54, Cambridge University Press, Cambridge, 1995 | DOI | MR
[LGA] Chaos (Videos, http://www.chaos-math.org/fr.html)
[Liv04] On contact Anosov flows, Ann. of Math. (2), Volume 159 (2004) no. 3, pp. 1275-1312 | DOI | MR | Zbl
[Mar02] An introduction to semiclassical and microlocal analysis, Universitext, Springer-Verlag, New York, 2002 | DOI | MR
[MS98] Introduction to symplectic topology, Oxford Math. Monographs, The Clarendon Press, Oxford University Press, New York, 1998 | MR
[Non08] Some open questions in ‘wave chaos’, Nonlinearity, Volume 21 (2008) no. 8, p. T113-T121 | DOI | MR | Zbl
[RS72] Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972 | MR
[RS78] Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York-London, 1978 | MR
[Rue91] Hasard et chaos, Odile Jacob, Paris, 1991
[Rue95] Turbulence, strange attractors, and chaos, World Scientific Series on Nonlinear Science. Series A : Monographs and Treatises, 16, World Scientific Publishing Co., Inc., River Edge, NJ, 1995 | DOI | MR
[Tay11a] Partial differential equations I. Basic theory, Applied Math. Sciences, 115, Springer, New York, 2011 | DOI | MR
[Tay11b] Partial differential equations II. Qualitative studies of linear equations, Applied Math. Sciences, 116, Springer, New York, 2011 | DOI | MR
[Tsu10] Quasi-compactness of transfer operators for contact Anosov flows, Nonlinearity, Volume 23 (2010) no. 7, pp. 1495-1545 | DOI | MR | Zbl
[Tsu12] Contact Anosov flows and the Fourier-Bros-Iagolnitzer transform, Ergodic Theory Dynam. Systems, Volume 32 (2012) no. 6, pp. 2083-2118 | DOI | MR | Zbl
[Woo92] Geometric quantization, Oxford Math. Monographs, The Clarendon Press, Oxford University Press, New York, 1992 (Oxford Science Publ.) | DOI | MR
[Zel87] Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941 | DOI | MR | Zbl
[Zwo12] Semiclassical analysis, Graduate Studies in Math., 138, American Mathematical Society, Providence, RI, 2012 | DOI | MR
[Šni74] Ergodic properties of eigenfunctions, Uspehi Mat. Nauk, Volume 29 (1974) no. 6, pp. 181-182 | MR | Zbl
Cité par Sources :