Ce texte propose quelques exemples d’analyse de grandes structures combinatoires aléatoires, que l’on peut définir naturellement en termes de modèles simples d’arbres couvrants sur le graphe complet.
@incollection{XUPS_2016____59_0, author = {Miermont, Gr\'egory}, title = {Probabilit\'es sur le graphe complet~: l{\textquoteright}exemple des arbres couvrants uniforme et minimal}, booktitle = {Arbres et marches al\'eatoires}, series = {Journ\'ees math\'ematiques X-UPS}, pages = {59--102}, publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique}, year = {2016}, doi = {10.5802/xups.2016-02}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/xups.2016-02/} }
TY - JOUR AU - Miermont, Grégory TI - Probabilités sur le graphe complet : l’exemple des arbres couvrants uniforme et minimal JO - Journées mathématiques X-UPS PY - 2016 SP - 59 EP - 102 PB - Les Éditions de l’École polytechnique UR - http://archive.numdam.org/articles/10.5802/xups.2016-02/ DO - 10.5802/xups.2016-02 LA - fr ID - XUPS_2016____59_0 ER -
%0 Journal Article %A Miermont, Grégory %T Probabilités sur le graphe complet : l’exemple des arbres couvrants uniforme et minimal %J Journées mathématiques X-UPS %D 2016 %P 59-102 %I Les Éditions de l’École polytechnique %U http://archive.numdam.org/articles/10.5802/xups.2016-02/ %R 10.5802/xups.2016-02 %G fr %F XUPS_2016____59_0
Miermont, Grégory. Probabilités sur le graphe complet : l’exemple des arbres couvrants uniforme et minimal. Journées mathématiques X-UPS, Arbres et marches aléatoires (2016), pp. 59-102. doi : 10.5802/xups.2016-02. http://archive.numdam.org/articles/10.5802/xups.2016-02/
[ABBG10] Critical random graphs : limiting constructions and distributional properties, Electron. J. Probab., Volume 15 (2010), p. 741-775, art. no. 25, | DOI | MR | Zbl
[ABBG12] The continuum limit of critical random graphs, Probab. Theory Relat. Fields, Volume 152 (2012) no. 3-4, pp. 367-406 | DOI | MR | Zbl
[ABBGM17] The scaling limit of the minimum spanning tree of the complete graph, Ann. Probab., Volume 45 (2017) no. 5, pp. 3075-3144 | DOI | MR | Zbl
[Ald90] The random walk construction of uniform spanning trees and uniform labelled trees, SIAM J. Discrete Math., Volume 3 (1990) no. 4, pp. 450-465 | DOI | MR | Zbl
[Ald91] The continuum random tree. I, Ann. Probab., Volume 19 (1991) no. 1, pp. 1-28 | DOI | MR | Zbl
[Ald92] Asymptotics in the random assignment problem, Probab. Theory Relat. Fields, Volume 93 (1992) no. 4, pp. 507-534 | DOI | MR | Zbl
[Ald93] The continuum random tree. III, Ann. Probab., Volume 21 (1993) no. 1, pp. 248-289 | DOI | MR | Zbl
[AP98] The standard additive coalescent, Ann. Probab., Volume 26 (1998) no. 4, pp. 1703-1726 | DOI | MR | Zbl
[AS92] Asymptotics for Euclidean minimal spanning trees on random points, Probab. Theory Relat. Fields, Volume 92 (1992) no. 2, pp. 247-258 | DOI | MR | Zbl
[AS04] The objective method : probabilistic combinatorial optimization and local weak convergence, Probability on discrete structures (Encyclopaedia Math. Sci.), Volume 110, Springer, Berlin, 2004, pp. 1-72 | DOI | MR | Zbl
[BBI01] A course in metric geometry, Graduate Studies in Math., 33, American Mathematical Society, Providence, RI, 2001 | DOI | MR
[Ber06] Random fragmentation and coagulation processes, Cambridge Studies in Advanced Math., 102, Cambridge University Press, Cambridge, 2006 | DOI | MR
[BS01] Recurrence of distributional limits of finite planar graphs, Electron. J. Probab., Volume 6 (2001), 23 | DOI | MR | Zbl
[CL02] Phase transition for parking blocks, Brownian excursion and coalescence, Random Structures Algorithms, Volume 21 (2002) no. 1, pp. 76-119 | DOI | MR | Zbl
[CP00] Limit distributions and random trees derived from the birthday problem with unequal probabilities, Electron. J. Probab., Volume 5 (2000), 2 | DOI | MR | Zbl
[DLG05] Probabilistic and fractal aspects of Lévy trees, Probab. Theory Relat. Fields, Volume 131 (2005) no. 4, pp. 553-603 | DOI | MR | Zbl
[DS98] The scaling limit of lattice trees in high dimensions, Comm. Math. Phys., Volume 193 (1998) no. 1, pp. 69-104 | DOI | MR | Zbl
[ER60] On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl., Volume 5 (1960), pp. 17-61 | MR | Zbl
[Fri85] On the value of a random minimum spanning tree problem, Discrete Appl. Math., Volume 10 (1985) no. 1, pp. 47-56 | DOI | MR | Zbl
[Kor16] Arbres et marches aléatoires, Arbres et marches aléatoires (Journées X-UPS), Les Éditions de l’École polytechnique, Palaiseau, 2016 (ce volume) | DOI | MR | Zbl
[LG93] The uniform random tree in a Brownian excursion, Probab. Theory Relat. Fields, Volume 96 (1993) no. 3, pp. 369-383 | DOI | MR | Zbl
[LG05] Random trees and applications, Probab. Surv., Volume 2 (2005), pp. 245-311 | DOI | MR | Zbl
[LGM12] Scaling limits of random trees and planar maps, Probability and statistical physics in two and more dimensions (Clay Math. Proc.), Volume 15, American Mathematical Society, Providence, RI, 2012, pp. 155-211 | MR | Zbl
[NP89] The branching process in a Brownian excursion, Séminaire de Probabilités, XXIII (Lect. Notes in Math.), Volume 1372, Springer, Berlin, 1989, pp. 248-257 | DOI | Numdam | MR | Zbl
[Pit99] Coalescent random forests, J. Combin. Theory Ser. A, Volume 85 (1999) no. 2, pp. 165-193 | DOI | MR | Zbl
[Wil96] Generating random spanning trees more quickly than the cover time, Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), ACM, New York, 1996, pp. 296-303 | DOI | MR | Zbl
Cité par Sources :