Les valeurs zêta multiples forment une famille de constantes mathématiques fondamentales qui contient notamment les valeurs aux entiers de la fonction zêta de Riemann. Si Euler leur a consacré des travaux, c’est seulement à la fin du xxe siècle que mathématiciens et physiciens ont réalisé l’importance de ces nombres qui apparaissent naturellement dans des situations variées. Des travaux récents (Goncharov, Deligne, Brown…) ont mis en évidence une structure cachée qui est révélée par la géométrie : une théorie de Galois des valeurs zêta multiples. L’étude de cette structure a permis de prouver des résultats spectaculaires sur les relations algébriques satisfaites par ces nombres, que nous présenterons. Nous discuterons enfin de l’apparition des valeurs zêta multiples en physique des particules à travers le calcul d’intégrales de Feynman.
@incollection{XUPS_2019____155_0, author = {Dupont, Cl\'ement}, title = {Valeurs z\^eta multiples}, booktitle = {P\'eriodes et transcendance}, series = {Journ\'ees math\'ematiques X-UPS}, pages = {155--195}, publisher = {Les \'Editions de l{\textquoteright}\'Ecole polytechnique}, year = {2019}, doi = {10.5802/xups.2019-02}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/xups.2019-02/} }
Dupont, Clément. Valeurs zêta multiples. Journées mathématiques X-UPS, Périodes et transcendance (2019), pp. 155-195. doi : 10.5802/xups.2019-02. http://archive.numdam.org/articles/10.5802/xups.2019-02/
[And04] Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas & Synthèses, 17, Société Mathématique de France, Paris, 2004
[And09] Galois theory, motives and transcendental numbers, Renormalization and Galois theories (IRMA Lect. Math. Theor. Phys.), Volume 15, European Mathematical Society, Zürich, 2009, pp. 165-177 | DOI | Zbl
[And17] Groupes de Galois motiviques et périodes, Séminaire Bourbaki. Vol. 2015/16 (Astérisque), Volume 390, Société Mathématique de France, Paris, 2017, pp. 1-26 (Exp. No. 1104) | Zbl
[Apé79] Irrationalité de et , Journées arithmétiques de Luminy (Astérisque), Volume 61, Société Mathématique de France, Paris, 1979, pp. 11-13 | Zbl
[BB03] Matroids motives, and a conjecture of Kontsevich, Duke Math. J., Volume 116 (2003) no. 1, pp. 147-188 | DOI | Zbl
[BBV10] The multiple zeta value data mine, Comput. Phys. Comm., Volume 181 (2010) no. 3, pp. 582-625 | DOI | Zbl
[BEK06] On motives associated to graph polynomials, Comm. Math. Phys., Volume 267 (2006) no. 1, pp. 181-225 | DOI | Zbl
[Beu79] A note on the irrationality of and , Bull. London Math. Soc., Volume 11 (1979) no. 3, pp. 268-272 | DOI | Zbl
[BF89] Numerical results on relations between fundamental constants using a new algorithm, Math. Comput., Volume 53 (1989) no. 188, pp. 649-656 | DOI | Zbl
[BF91] A polynomial time, numerically stable integer relation algorithm (1991) (Report SRC-TR-92-066, Supercomputing Research Center, 14 p.)
[BGF] Multiple zeta values : from numbers to motives (livre à paraître dans la série Clay Mathematics Proceedings)
[BK97] Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett. B, Volume 393 (1997) no. 3-4, pp. 403-412 | DOI | Zbl
[Bor77] Cohomologie de et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 4 (1977) no. 4, pp. 613-636 | Zbl
[BR01] Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math., Volume 146 (2001) no. 1, pp. 193-207 | DOI | Zbl
[Bro12a] Mixed Tate motives over , Ann. of Math. (2), Volume 175 (2012) no. 2, pp. 949-976 | DOI | Zbl
[Bro12b] On the decomposition of motivic multiple zeta values, Galois-Teichmüller theory and arithmetic geometry (Adv. Stud. Pure Math.), Volume 63, Math. Soc. Japan, Tokyo, 2012, pp. 31-58 | DOI | Zbl
[Bro17] Feynman amplitudes, coaction principle, and cosmic Galois group, Commun. Number Theory Phys., Volume 11 (2017) no. 3, pp. 453-556 | DOI | Zbl
[BS03] La fonction zêta (Berline, N.; Sabbah, C., eds.), Journées X-UPS, Les Éditions École polytechnique, Palaiseau, 2003
[BS12] A K3 in , Duke Math. J., Volume 161 (2012) no. 10, pp. 1817-1862 | DOI | Zbl
[Car01] A mad day’s work : from Grothendieck to Connes and Kontsevich. The evolution of concepts of space and symmetry, Bull. Amer. Math. Soc. (N.S.), Volume 38 (2001) no. 4, pp. 389-408 | DOI | Zbl
[Che77] Iterated path integrals, Bull. Amer. Math. Soc. (N.S.), Volume 83 (1977) no. 5, pp. 831-879 | DOI | Zbl
[Del74] La conjecture de Weil. I, Publ. Math. Inst. Hautes Études Sci. (1974) no. 43, pp. 273-307 | DOI | Numdam | Zbl
[Del80] La conjecture de Weil. II, Publ. Math. Inst. Hautes Études Sci. (1980) no. 52, pp. 137-252 | DOI | Numdam | Zbl
[Del89] Le groupe fondamental de la droite projective moins trois points, Galois groups over (Berkeley, CA, 1987) (Math. Sci. Res. Inst. Publ.), Volume 16, Springer, New York, 1989, pp. 79-297 | DOI | Zbl
[DG05] Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 1, pp. 1-56 | DOI | Numdam | Zbl
[DR31] Sur l’analysis situs des variétés à dimensions, Doctorat d’État, Faculté des Sciences de Paris (1931) (http://www.numdam.org/item/THESE_1931__129__1_0)
[Dri91] On quasitriangular quasi-Hopf algebras and a group closely connected with , Leningrad Math. J., Volume 2 (1991) no. 4, pp. 829-860 | Zbl
[Eul38] De summatione innumerabilium progressionum, Commentarii academiae scientiarum Petropolitanae (1738), pp. 91-105
[Eul40] De summis serierum reciprocarum, Commentarii academiae scientiarum Petropolitanae (1740), pp. 123-134
[Fis04] Irrationalité de valeurs de zêta (d’après Apéry, Rivoal,...), Séminaire Bourbaki (Astérisque), Volume 294, Société Mathématique de France, Paris, 2004, pp. 27-62 | Zbl
[GKZ06] Double zeta values and modular forms, Automorphic forms and zeta functions, World Sci. Publ., Hackensack, NJ, 2006, pp. 71-106 | DOI | Zbl
[Gon01a] The dihedral Lie algebras and Galois symmetries of , Duke Math. J., Volume 110 (2001) no. 3, pp. 397-487 | DOI | Zbl
[Gon01b] Multiple polylogarithms and mixed Tate motives, 2001 | arXiv
[Gon01c] Multiple -values, Galois groups, and geometry of modular varieties, European Congress of Mathematics (Barcelona, July 10–14, 2000), Vol. I, Birkhäuser Basel, Basel, 2001, pp. 361-392 | Zbl
[Gon05] Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J., Volume 128 (2005) no. 2, pp. 209-284 | DOI | Zbl
[Gro66] On the de Rham cohomology of algebraic varieties, Publ. Math. Inst. Hautes Études Sci. (1966) no. 29, pp. 95-103 | DOI | Numdam | Zbl
[Gro68] Formule de Lefschetz et rationalité des fonctions , Dix exposés sur la cohomologie des schémas (Adv. Stud. Pure Math.), Volume 3, North-Holland, Amsterdam, 1968, pp. 31-45 | Zbl
[Hai86] Mixed Hodge structures on homotopy groups, Bull. Amer. Math. Soc. (N.S.), Volume 14 (1986) no. 1, pp. 111-114 | DOI | Zbl
[Hai87a] The de Rham homotopy theory of complex algebraic varieties. I, -Theory, Volume 1 (1987) no. 3, pp. 271-324 | DOI | Zbl
[Hai87b] The geometry of the mixed Hodge structure on the fundamental group, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) (Proc. Sympos. Pure Math.), Volume 46, American Mathematical Society, Providence, RI, 1987, pp. 247-282 | Zbl
[HJPO99] Aspects combinatoires des polylogarithmes et des sommes d’Euler-Zagier, Sém. Lothar. Combin., Volume 43 (1999), B43e, 29 pages | Zbl
[HMS17] Periods and Nori motives, Ergeb. Math. Grenzgeb. (3), 65, Springer, Cham, 2017 | DOI
[Hof97] The algebra of multiple harmonic series, J. Algebra, Volume 194 (1997) no. 2, pp. 477-495 | DOI | Zbl
[Hof00] Quasi-shuffle products, J. Algebraic Combin., Volume 11 (2000) no. 1, pp. 49-68 | DOI | Zbl
[HZ87] Unipotent variations of mixed Hodge structure, Invent. Math., Volume 88 (1987) no. 1, pp. 83-124 | DOI | Zbl
[IKZ06] Derivation and double shuffle relations for multiple zeta values, Compositio Math., Volume 142 (2006) no. 2, pp. 307-338 | DOI | Zbl
[KZ01] Periods, Mathematics unlimited—2001 and beyond, Springer, Berlin, 2001, pp. 771-808 | DOI | Zbl
[Lin82] Ueber die Zahl , Math. Ann., Volume 20 (1882) no. 2, pp. 213-225 | DOI
[PS16] The Galois coaction on periods, Commun. Number Theory Phys., Volume 11 (2016), pp. 657-705 | DOI | Zbl
[Reu93] Free Lie algebras, London Math. Soc. Monographs, 7, The Clarendon Press, Oxford University Press, New York, 1993 | DOI
[Riv00] La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad. Sci. Paris Sér. I Math., Volume 331 (2000) no. 4, pp. 267-270 | DOI | Zbl
[Riv19] Les -fonctions et -fonctions de Siegel, Périodes et transcendence (Journées X-UPS), Les Éditions de l’École polytechnique, Palaiseau, 2019 (ce volume) | DOI
[Rud87] Real and complex analysis, McGraw-Hill Book Co., New York, 1987
[Sou10] Motivic double shuffle, Int. J. Number Theory, Volume 6 (2010) no. 2, pp. 339-370 | DOI | Zbl
[Sti30] Methodus differentialis, sive Tractatus de summatione et interpolatione serierum infinitarum, G. Bowyer, impensis G. Strahan (Londini), 1730
[Ter02] Mixed Tate motives and multiple zeta values, Invent. Math., Volume 149 (2002) no. 2, pp. 339-369 | DOI | Zbl
[Voe00] Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories (Ann. of Math. Stud.), Volume 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188-238 | Zbl
[Wei49] Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc., Volume 55 (1949), pp. 497-508 | DOI | Zbl
[Zag94] Values of zeta functions and their applications, First European Congress of Mathematics (Paris, July 6–10, 1992) Vol. II, Birkhäuser Basel, Basel, 1994, pp. 497-512 | DOI | Zbl
[Zud01] One of the numbers , , , is irrational, Uspehi Mat. Nauk, Volume 56 (2001) no. 4(340), pp. 149-150 | DOI | Zbl
Cité par Sources :