A short proof of the variational principle for a + N action on a compact space
International conference on dynamical systems in mathematical physics, Astérisque, no. 40 (1976), pp. 147-157.
@incollection{AST_1976__40__147_0,
     author = {Misiurewicz, Michal},
     title = {A short proof of the variational principle for a $\mathbb{Z}_{+}^N$  action on a compact space},
     booktitle = {International conference on dynamical systems in mathematical physics},
     series = {Ast\'erisque},
     pages = {147--157},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {40},
     year = {1976},
     mrnumber = {444904},
     zbl = {0368.54013},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1976__40__147_0/}
}
TY  - CHAP
AU  - Misiurewicz, Michal
TI  - A short proof of the variational principle for a $\mathbb{Z}_{+}^N$  action on a compact space
BT  - International conference on dynamical systems in mathematical physics
AU  - Collectif
T3  - Astérisque
PY  - 1976
SP  - 147
EP  - 157
IS  - 40
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1976__40__147_0/
LA  - en
ID  - AST_1976__40__147_0
ER  - 
%0 Book Section
%A Misiurewicz, Michal
%T A short proof of the variational principle for a $\mathbb{Z}_{+}^N$  action on a compact space
%B International conference on dynamical systems in mathematical physics
%A Collectif
%S Astérisque
%D 1976
%P 147-157
%N 40
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1976__40__147_0/
%G en
%F AST_1976__40__147_0
Misiurewicz, Michal. A short proof of the variational principle for a $\mathbb{Z}_{+}^N$  action on a compact space, in International conference on dynamical systems in mathematical physics, Astérisque, no. 40 (1976), pp. 147-157. http://archive.numdam.org/item/AST_1976__40__147_0/

[1] N. Bourbaki, Éléments de Mathématique, Livre VI (Intégration) Chap. IV - Hermann & Cie, Paris, 1952.

[2] J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie verw. Geb., 25 (1973), 11-30. | DOI | MR | Zbl

[3] M. Denker, Remarques sur la pression pour les transformations continues, C.R. Acad. Sci. Paris, 279 (1974), 967-970. | MR | Zbl

[4] M. Denker, Measures with maximal entropy, preprint | DOI | MR | Zbl

[5] E. I. Dinaburg, СьЯЗь мeждy pазΛи4ными Знгропийнымии xAрактеристикaмu Aинами4еских систем-изь A. H. CCCP, 35 (1971), 324-366.

[6] S. A. Elsanousi, A variational principle for the pressure of a continuous 2 -action on a compact metric space, preprint. | MR | Zbl

[7] T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. Lond. Math. Soc., 3 (1971), 176-180. | DOI | MR | Zbl

[8] L. W. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc., 23 (1969), 679-688. | DOI | MR | Zbl

[9] J. L. Kelley, General Topology, Van Nostrand, Princeton, 1955. | MR | Zbl

[10] M. Misiurewicz, Topological conditional entropy, Studia Math., 55 (1976), 175-200. | DOI | EuDML | MR | Zbl

[11] V. A. Rohlin, Λекции пo Энгропийной гeopни npeo6pa3ьaний с иньариангной мepoй - YMH, 22 (1967), 3-56.

V. A. Rohlin, (Lectures on the entropy theory of measure preserving transformations, Russian Math. Surv. 22, (1967), 1-52) | DOI | Zbl

[12] D. Ruelle, Statistical mechanics on a compact set with ν action satisfying expansiveness and specification, Trans. Amer. Math. Soc., 185 (1973), 237-252. | DOI | MR | Zbl

[13] P. Walters, A variational principle for the pressure of continuous transformations, preprint. | DOI | MR | Zbl