On topological entropy of semigroups of commuting transformations
International conference on dynamical systems in mathematical physics, Astérisque, no. 40 (1976), pp. 17-62.
@incollection{AST_1976__40__17_0,
     author = {Eberlein, Ernst},
     title = {On topological entropy of semigroups of commuting transformations},
     booktitle = {International conference on dynamical systems in mathematical physics},
     series = {Ast\'erisque},
     pages = {17--62},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {40},
     year = {1976},
     mrnumber = {453976},
     zbl = {0338.54027},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1976__40__17_0/}
}
TY  - CHAP
AU  - Eberlein, Ernst
TI  - On topological entropy of semigroups of commuting transformations
BT  - International conference on dynamical systems in mathematical physics
AU  - Collectif
T3  - Astérisque
PY  - 1976
SP  - 17
EP  - 62
IS  - 40
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1976__40__17_0/
LA  - en
ID  - AST_1976__40__17_0
ER  - 
%0 Book Section
%A Eberlein, Ernst
%T On topological entropy of semigroups of commuting transformations
%B International conference on dynamical systems in mathematical physics
%A Collectif
%S Astérisque
%D 1976
%P 17-62
%N 40
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1976__40__17_0/
%G en
%F AST_1976__40__17_0
Eberlein, Ernst. On topological entropy of semigroups of commuting transformations, in International conference on dynamical systems in mathematical physics, Astérisque, no. 40 (1976), pp. 17-62. http://archive.numdam.org/item/AST_1976__40__17_0/

[1] Adler R. L., Konheim A. G., Mc Andrew M. H., Topological entropy. Trans. AMS 114 (1965) 309-319. | DOI | MR | Zbl

[2] Bowen R., Topological entropy and Axiom A. Proc. Symp. Pure Math. Vol. 14 (1970) 23-41. | DOI | MR | Zbl

[3] Bowen R., Entropy for group endomorphisms and homogeneous spaces. Trans. AMS 153 (1971) 401-414. | DOI | MR | Zbl

[4] Bowen R. Entropy-expansive maps. Trans. AMS 164 (1972) 323-331. | DOI | MR | Zbl

[5] Conze J. P. Entropie d'un groupe abelien de transformations. Z. Wahrscheinlichkeitstheorie verw. Geb. 25 (1972) 11-30. | DOI | MR | Zbl

[6] Denker M., Eberlein E., Ergodic flows are strictly ergodic. Advances in Mathematics 13 (1974) 437-473. | DOI | MR | Zbl

[7] Eberlein E., Einbettung von Strömungen in Funktionenräume durch Erzeuger vom endlichen Typ. Z. Wahrscheinlichkeitstheorie verw. Geb. 27 (1973) 277-291. | DOI | MR | Zbl

[8] Föllmer H., On entropy and information gain in random fields. Z. Wahrscheinlichkeitstheorie verw. Geb. 26 (1973) 207-217. | DOI | MR | Zbl

[9] Goodwyn L. W., The product theorem for topological entropy. Trans. AMS. 158 (1971) 445-452. | DOI | MR | Zbl

[10] Goodwyn L. W., Topological entropy bounds measure-theoretic entropy. Proc. AMS 23 (1969) 679-688. | DOI | MR | Zbl

[11] Goodwyn L. W., Comparing topological entropy with measure-theoretic entropy. American Journal of Math. 54 (1972) 366-388. | DOI | MR | Zbl

[12] Jacobs K., Lipschitz functions and the prevalence of strict ergodicity for continuous time flows. Lecture Notes in Math. 160, Springer Verlag 87-124. | MR | Zbl

[13] Katznelson Y., Weiss B., Commuting measure-preserving transformations. Israel J. Math. 12 (1972) 161-173. | DOI | MR | Zbl

[14] Keynes H. Robertson J., Generators for Topological Entropy and Expansiveness. Math. Syst. Theory 3 (1969) 51-59. | DOI | MR | Zbl

[15] Kolmogorov A. N., Tikhomirov V. M., ϵ-entropy and ϵ-capacity of sets in functional spaces. AMS. Translations 17 (1961) 277-364. | MR | Zbl

[16] Krengel U., K-flows are forward deterministic, backward completely non-deterministic stationary point processes. J. Math. Anal. Appl. 35 (1971) 611-620. | DOI | MR | Zbl

[17] Lind D. A., Locally compact measure preserving flows. Adv. in Mathematics 15 (1975) 175-193. | DOI | MR | Zbl

[18] Pickel B. S., Stepin A. M., On the entropy equidistribution property of commutative groups of metric automorphisms. Soviet. Math. Dokl. 12 (1971) 938-942. | Zbl

[19] Rokhlin V. A., Lectures on the entropy theory of measure preserving transformations. Russ. Math. Surv. 22 (1967) No. 5, 1-52. | DOI | Zbl

[20] Thouvenot J. P., Convergence en moyenne de l'information pour l'action de Z 2 . Z. Wahrsch. Theorie verw Geb. 24 (1972) 135-137. | DOI | MR | Zbl

[21] Elsanousi S. A., A variational principle for the pressure of a continuous Z 2 -action on a compact metric space. (to appear) | DOI | MR | Zbl

[22] Goodman T. N. T., Topological sequence entropy. Proc. London Math. Soc. (3) 29 (1974) 331-350. | DOI | MR | Zbl

[23] Kushnirenko A. G., On metric invariants of entropy type. Russ. Math. Surv. 22 (1967) No. 5, 53-61. | DOI | Zbl

[24] Misiurewicz M., A short proof of the variational principle for a Z + N -action on a compact space, (these Proceedings). | MR | Zbl

[25] Newton D., On sequence entropy I/II. Math. Systems Theory 4 (1970) 119-128. | MR | Zbl

[26] Newton D., Krug E., On sequence entropy of automorphisms of a Lebesgue space. Z. Wahrscheinlichk. Theorie verw. Geb. 24 (1972) 211-214. | DOI | MR | Zbl

[27] Ruelle D., Statistical mechanics on a compact set with Z ν -action satisfying expansiveness and specification. Trans. AMS 185 (1973) 237-251. | DOI | MR | Zbl

[28] Walters P., A variational principle for the pressure of continuous transformations, (to appear). | DOI | MR | Zbl