@incollection{AST_1976__40__183_0, author = {Walters, Peter}, title = {A generalized {Ruelle} {Perron-Frobenius} theorem and some applications}, booktitle = {International conference on dynamical systems in mathematical physics}, series = {Ast\'erisque}, pages = {183--192}, publisher = {Soci\'et\'e math\'ematique de France}, number = {40}, year = {1976}, mrnumber = {486428}, zbl = {0337.28017}, language = {en}, url = {http://archive.numdam.org/item/AST_1976__40__183_0/} }
TY - CHAP AU - Walters, Peter TI - A generalized Ruelle Perron-Frobenius theorem and some applications BT - International conference on dynamical systems in mathematical physics AU - Collectif T3 - Astérisque PY - 1976 SP - 183 EP - 192 IS - 40 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1976__40__183_0/ LA - en ID - AST_1976__40__183_0 ER -
%0 Book Section %A Walters, Peter %T A generalized Ruelle Perron-Frobenius theorem and some applications %B International conference on dynamical systems in mathematical physics %A Collectif %S Astérisque %D 1976 %P 183-192 %N 40 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1976__40__183_0/ %G en %F AST_1976__40__183_0
Walters, Peter. A generalized Ruelle Perron-Frobenius theorem and some applications, in International conference on dynamical systems in mathematical physics, Astérisque, no. 40 (1976), pp. 183-192. http://archive.numdam.org/item/AST_1976__40__183_0/
[1] -expansions revisited. Recent Advances in Topological Dynamics. Springer lecture notes. Vol. 318. | MR | Zbl
,[2] Equilibrium states and the Ergodic Theory of Anosov Diffeomorphisms. Springer lecture notes Vol. 470. | MR | Zbl
,[3] Strongly mixing -measures. Invent. Math. 16 (1972) 309-324. | DOI | EuDML | MR | Zbl
,[4] On expanding mappings. Bull. de l'académie Polonaise des sciences Vol. XIX No. 1 1971. | MR | Zbl
,[5] Principe variationnel et systèmes dynamiques symboliques. Commen. Maths. Phys. 33 (1973) pp 119-128.
,[6] Méchanique statistique de l'équilibre pour un revêtement. Preprint.
,[7] Anosov flows with Gibbs measures are also Bernoullian. Israel J. Math. To appear. | MR | Zbl
,[8] Statistical mechanics of a one-dimensional lattice gas. Comm. Math. Phys. 9 (1968) 267-278. | DOI | MR | Zbl
,[9] Endomorphisms of compact differentiable manifolds. A.J.M. XCl Jan. 1969. | MR | Zbl
,[10] A variational principle for the pressure of a continuous transformation. To appear in A.J.M. | MR | Zbl
,[11] Ruelle's operator theorem and -measures. To appear in Trans. A.M.S. | MR | Zbl
,