@incollection{AST_1976__40__79_0, author = {Franks, John M.}, title = {Homology and the zeta function for diffeomorphisms}, booktitle = {International conference on dynamical systems in mathematical physics}, series = {Ast\'erisque}, pages = {79--88}, publisher = {Soci\'et\'e math\'ematique de France}, number = {40}, year = {1976}, mrnumber = {650814}, zbl = {0366.58010}, language = {en}, url = {http://archive.numdam.org/item/AST_1976__40__79_0/} }
TY - CHAP AU - Franks, John M. TI - Homology and the zeta function for diffeomorphisms BT - International conference on dynamical systems in mathematical physics AU - Collectif T3 - Astérisque PY - 1976 SP - 79 EP - 88 IS - 40 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1976__40__79_0/ LA - en ID - AST_1976__40__79_0 ER -
%0 Book Section %A Franks, John M. %T Homology and the zeta function for diffeomorphisms %B International conference on dynamical systems in mathematical physics %A Collectif %S Astérisque %D 1976 %P 79-88 %N 40 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1976__40__79_0/ %G en %F AST_1976__40__79_0
Franks, John M. Homology and the zeta function for diffeomorphisms, in International conference on dynamical systems in mathematical physics, Astérisque, no. 40 (1976), pp. 79-88. http://archive.numdam.org/item/AST_1976__40__79_0/
[1] On Periodic Points, Annals of Math. (2) 81 (1965), 82-99. | DOI | MR | Zbl
and ,[2] Topological Entropy and Axiom A, Proc. Sympos. Pure Math. 14, Amer. Math. Soc. Providence R.I., 23-42. | DOI | MR | Zbl
,[3] The Zeta Funcion of Subshifts, Proc. Sympos. Pure Math. 14, Amer. Math. Soc. Providence R.I.
and ,[4] Morse Inequalities for Zeta Functions, in Annals of Math. 102 (1975), 143-157. | DOI | MR | Zbl
,[5] A Reduced Zeta Function for Diffeomorphisms, to appear, in Amer. Jour. of Math. | MR | Zbl
,[6] Axiom and no cycles imply rational. Bull. Amer. Math. Soc. 76 (1970), 592-594. | MR | Zbl
,[7] Axiom diffeomorphisms have rational zeta functions, Bull. London Math. Soc. 3 (1971), 215-220. | DOI | MR | Zbl
,[8] There are no new Anosov Diffeomorphisms on Tori, Amer. Jour. of Math. 96 (1974), 422-429. | DOI | MR | Zbl
,[9] Morse Theory, Annals of Math. Studies 51, Princeton Univ. Press, 1963. | MR | Zbl
,[10] Currents, Flows, and Diffeomorphisms, Preprint I.H.E.S., 084, 1974. | MR | Zbl
and ,[11] Entropy and stability, to appear in Topology. | MR | Zbl
and ,[12] Differentiable Dynamical Systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. | DOI | MR | Zbl
,[13] The -Stability Theorem, Proc. Sympos. Pure Math., 14 (1970) 289-297. | DOI | MR | Zbl
,