On canonical form for completely reachable dynamical systems
Analyse des systèmes, Astérisque, no. 75-76 (1980), pp. 67-75.
@incollection{AST_1980__75-76__67_0,
     author = {Perdon, A. M. and Conte, C.},
     title = {On canonical form for completely reachable dynamical systems},
     booktitle = {Analyse des syst\`emes},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {75-76},
     year = {1980},
     zbl = {0458.93020},
     mrnumber = {581703},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1980__75-76__67_0/}
}
TY  - CHAP
AU  - Perdon, A. M.
AU  - Conte, C.
TI  - On canonical form for completely reachable dynamical systems
BT  - Analyse des systèmes
AU  - Collectif
T3  - Astérisque
PY  - 1980
DA  - 1980///
IS  - 75-76
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1980__75-76__67_0/
UR  - https://zbmath.org/?q=an%3A0458.93020
UR  - https://www.ams.org/mathscinet-getitem?mr=581703
LA  - en
ID  - AST_1980__75-76__67_0
ER  - 
%0 Book Section
%A Perdon, A. M.
%A Conte, C.
%T On canonical form for completely reachable dynamical systems
%B Analyse des systèmes
%A Collectif
%S Astérisque
%D 1980
%N 75-76
%I Société mathématique de France
%G en
%F AST_1980__75-76__67_0
Perdon, A. M.; Conte, C. On canonical form for completely reachable dynamical systems, in Analyse des systèmes, Astérisque, no. 75-76 (1980), pp. 67-75. http://archive.numdam.org/item/AST_1980__75-76__67_0/

[1] M. Clark. - The consistent selection of parametrization in systems identification. Proc. J. A. C. C. Purdue Univ. Lafayette Indiana (1977).

[2] M. J. Denham. - Canonical forms for the identification of multivariable linear systems. IEEE Trans. on Aut. Control. (Dec. 1974). | MR | Zbl

[3] M. Hazewinkel. - Moduli and canonical forms for linear dynamical systems. Rep. 7609/M Erasmus Univ. Rotterdam (1976). | Zbl

[4] M. Hazewinkel. - Moduli and canonical forms for linear dynamical systems. Rep.7610/M Erasmus Univ. Rotterdam (1976). | Zbl

[5] M. Hazewinkel, R. E. Kalman.- On invariants, canonical forms and moduli for linear, constant, finite dim. dyn. systems - Math. System Theory, Udine 1975, Springer-Verlag (1976). | MR | Zbl

[6] D. Husemoller.- Fibre bundles. Mc Graw Hill (1966). | DOI | MR | Zbl

[7] R. E. Kalman. - Algebraic geometric description of the class of linear systems of constant dimension. Proc. 8th Annual Princeton Conf., on Inf. Sci. and Systems (1974).

[8] A. M. Perdon, G. Conte.- Continuous canonical forms for classes of completely reachable Systems. Ricerche di Aut. vol. 8 (1977).

[9] V. M. Popov. - Invariant description of linear time-invariant controllable systems. SIAM J. on Cont., vol. 10 (1972). | MR | Zbl

[10] J. Rissanen.- Basis of invariants and canonical forms for linear dynamical systems. Automatica, vol. 10 (1974). | DOI | MR | Zbl

[11] F. Severi. - Sulla varietà che rappresenta gli spazi subordinati di data dimensione, immersi in uno spazio lineare. Ann. Di Matematica Serie III, vol. XXIV (1915). | JFM