Gevrey hypoellipticity for a class of operators with multiple characteristics
Analytic solutions of partial differential equations - Trento, 1981, Astérisque no. 89-90  (1981), p. 249-262
@incollection{AST_1981__89-90__249_0,
     author = {Rodino, L.},
     title = {Gevrey hypoellipticity for a class of operators with multiple characteristics},
     booktitle = {Analytic solutions of partial differential equations - Trento, 1981},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {89-90},
     year = {1981},
     pages = {249-262},
     zbl = {0501.35021},
     mrnumber = {666412},
     language = {en},
     url = {http://www.numdam.org/item/AST_1981__89-90__249_0}
}
Rodino, L. Gevrey hypoellipticity for a class of operators with multiple characteristics, in Analytic solutions of partial differential equations - Trento, 1981, Astérisque, no. 89-90 (1981), pp. 249-262. http://www.numdam.org/item/AST_1981__89-90__249_0/

[1] M. S. Baouendi and C. Goulaouic, Nonanalytic-hypoellipticity for some degenerate elliptic operators. Bull. Amer. Math. Soc., 78 (1972), 483-486. | Article | MR 296507 | Zbl 0276.35023

[2] M. Derridj and C. Zuily, Sur la régularité Gevrey des opérateurs de Hörmander, J. Math. pures et appl., 52 (1973), 309-336. | MR 512976 | Zbl 0266.35013

[3] M. Durand, Régularité Gevrey d'une classe d'opérateurs hypoelliptiques, J . Math, pures et appl., 57 (1978), 323-350. | MR 513102 | Zbl 0344.35018

[4] V. V. Grushin, On a class of elliptic pseudodifferential operators degenerate on a submanifold, Mat. Sbornik, 84 (1971), 163-195. | MR 283630 | Zbl 0238.47038 | Zbl 0215.49203

V. V. Grushin, On a class of elliptic pseudodifferential operators degenerate on a submanifold, Math. USSR Sbornik, 13 (1971), 155-185. | Article | Zbl 0238.47038

[5] L. Hörmander, Linear partial differential operators, Springer-Verlag 1969, Berlin. | Article | MR 248435 | Zbl 0321.35001

[6] M. Mascarello and L. Rodino, A class of pseudo differential operators with multiple non-involutive characteristics, Ann. Sc. Norm. Sup. Pisa, to appear. | Zbl 0441.35069

[7] G. Métivier, Analytic hypoellipticity for operators with multiple characteristics. Comm. Partial Differential Equations, to appear. | MR 597752 | Zbl 0455.35040

[8] C. Parenti and L. Rodino, Parametrices for a class of pseudo differential operators, I, II, Annali Mat. Pura ed Appl., 125 (1980), 221-278. | Article | MR 605210 | Zbl 0406.35066

[9] B. Pini, Proprietà locali delle soluzioni di una classe di equazioni ipoellittiche, Rend. Sem. Mat. Padova, 32 (1962), 221-238. | MR 145201 | Zbl 0119.08401

[10] K. Taniguchi, On the hypoellipticity and the global analytic-hypoellipticity of pseudo differential operators, Osaka J. Math., 11 (1974), 221-238. | MR 353067 | Zbl 0292.35020

[11] D. S. Tartakoff, Elementary proofs of analytic hypoellipticity for the b and ¯-Neumann problem. Proceedings of the meeting on Analytic Solutions of Partial Differential Equations, Trento 1981, to appear. | MR 666404

[12] F. Trèves, Analytic hypoellipticity of a class of pseudodifferential operators with double characteristics and applications to the ¯-Neumann problem. Comm. Partial Differential Equations, 3 (1978), 475-642. | Article | MR 492802 | Zbl 0384.35055

[13] L. R. Volevich, Local regularity of the solutions of the quasi-elliptic systems (Russian), Mat. Sbornik, 59 (1962), 3-52. | MR 150448 | Zbl 0161.07801

[14] L. Zanghirati, Iterati di operatori quasi-ellittici e classi di Gevrey, Boll. Unione Mat. Ital., 18-B (1981), to appear. | MR 629415 | Zbl 0477.35047