Lenstra's constant and euclidean number fields
Journées arithmétiques - Metz, 1981, Astérisque, no. 94 (1982), pp. 87-131.
@incollection{AST_1982__94__87_0,
     author = {Leutbecher, Armin and Martinet, Jacques},
     title = {Lenstra's constant and euclidean number fields},
     booktitle = {Journ\'ees arithm\'etiques - Metz, 1981},
     series = {Ast\'erisque},
     pages = {87--131},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {94},
     year = {1982},
     zbl = {0499.12013},
     mrnumber = {702368},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1982__94__87_0/}
}
TY  - CHAP
AU  - Leutbecher, Armin
AU  - Martinet, Jacques
TI  - Lenstra's constant and euclidean number fields
BT  - Journées arithmétiques - Metz, 1981
AU  - Collectif
T3  - Astérisque
PY  - 1982
SP  - 87
EP  - 131
IS  - 94
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1982__94__87_0/
LA  - en
ID  - AST_1982__94__87_0
ER  - 
%0 Book Section
%A Leutbecher, Armin
%A Martinet, Jacques
%T Lenstra's constant and euclidean number fields
%B Journées arithmétiques - Metz, 1981
%A Collectif
%S Astérisque
%D 1982
%P 87-131
%N 94
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1982__94__87_0/
%G en
%F AST_1982__94__87_0
Leutbecher, Armin; Martinet, Jacques. Lenstra's constant and euclidean number fields, in Journées arithmétiques - Metz, 1981, Astérisque, no. 94 (1982), pp. 87-131. http://archive.numdam.org/item/AST_1982__94__87_0/

[1] I. O. Angell, A Table of Totally Real Cubic Fields, Math. Comp. 30, 184-187 (1976). | DOI | MR | Zbl

[2] V. G. Cioffari, The Euclidean condition in pure cubic and complex quartic fields, Math. Comp. 33, 389-398 (1979). | DOI | MR | Zbl

[3] F. Diaz Y Diaz, Tables minorant la racine n -ième du discriminant d'un corps de degré n , Publ. Math. Orsay, 80. 06 (1980). | MR | Zbl

[4] H. J. Godwin, Real quartic fields with small discriminants, J. London Math. Soc. 31, 478-485 (1956). | DOI | MR | Zbl

[5] H. J. Godwin, On totally complex quartic fields with small discriminants, Proc. Cambridge Phil. Soc. 53, 1-4 (1957). | DOI | MR | Zbl

[6] H. J. Godwin, On quartic fields of signature one with small discriminant, Quart. J. Math. Oxford 8, 214-222 (1957). | DOI | MR | Zbl

[7] M.-N. Gras, Lien entre le groupe des unités et la monogénéité des corps cubiques cycliques, Publ. Math. Fac. Sc. Besançon, année 1975-76, fasc. 1, 19 p.

[8] A. Hurwitz, Zur Theorie der algebraischen Zahlen, Nachr. der k. Ges. d. Wiss. Göttingen, Math. Phys. Klasse, 324-331 (1895) ; Werke, Bd 2, 236-243. | EuDML | JFM

[9] A. Hurwitz, Der Euklidische Divisionssatz in einem endlischen algebraischen Zahlkörper, Math. Z. 3, 123-126 (1919); Werke, Bd 2, 471-474. | DOI | EuDML | JFM | MR

[10] H. W. Lenstra, Jr., Euclidean Number Fields of Large Degree, Invent. Math. 38, 237-254 (1977). | DOI | EuDML | MR | Zbl

[11] H. W. Lenstra, Jr., Quelques exemples d'anneaux euclidiens, C.R. Acad. Sc. Paris, 286, A, 683-685 (1978). | MR | Zbl

[12] H. W. Lenstra, Jr., Euclidean Number Fields 1, 2, 3, Math. Intelligencer 2, 6-15, 73-77, 99-103 (1979-80). | DOI | MR | Zbl

[13] J. Martinet, Petits discriminants, Ann. Inst. Fourier, XXIX, 159-170 (1979). | DOI | EuDML | Numdam | MR | Zbl

[14] J. Martinet, Petits discriminants des corps de nombres, Lectures Notes of the London Math. Soc. (to appear). | Zbl

[15] J.-F. Mestre, Corps euclidiens, unités exceptionnelles et courbes el-liptiques, J. Number Theory 13, 123-137 (1981). | DOI | MR | Zbl

[16] T. Nagell, Sur un type particulier d'unités algébriques, Ark. Math. 8, 18, 163-184 (1969). | MR | Zbl

[17] A. M. Odlyzko, Discriminant Bounds, Mimeographed, 1976. | Zbl

[18] O. T. O’Meara, On the finite generation of linear groups over Hasse domains, J. reine angew. Math. 217, 79-108 (1965). | EuDML | MR | Zbl

[19] M. Pohst, The minimum Discriminant of Seventh Degree Totally Real Algebraic Number Fields, Number Theory and Algebra, H. Zassenhaus ed., 235-240, Academic Press, New York, 1977. | MR | Zbl

[20] M. Pohst, On the Computation of Number Fields of Small Discriminants Including the Minimum Discriminants of Sixth Degree Fields, J. Number Theory 14, 99-117 (1982). | DOI | MR | Zbl

[21] H. Weber, Lehrbuch der Algebra, 2nd ed., Bd. 3, 1908. | EuDML | MR