A mixing property for non-singular actions
Bifurcation, théorie ergodique et applications - 22-26 juin 1981, Astérisque, no. 98-99 (1982), pp. 163-183.
@incollection{AST_1983__98-99__163_0,
     author = {Walters, Peter},
     title = {A mixing property for non-singular actions},
     booktitle = {Bifurcation, th\'eorie ergodique et applications - 22-26 juin 1981},
     series = {Ast\'erisque},
     pages = {163--183},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {98-99},
     year = {1982},
     mrnumber = {724446},
     zbl = {0556.28017},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1983__98-99__163_0/}
}
TY  - CHAP
AU  - Walters, Peter
TI  - A mixing property for non-singular actions
BT  - Bifurcation, théorie ergodique et applications - 22-26 juin 1981
AU  - Collectif
T3  - Astérisque
PY  - 1982
SP  - 163
EP  - 183
IS  - 98-99
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1983__98-99__163_0/
LA  - en
ID  - AST_1983__98-99__163_0
ER  - 
%0 Book Section
%A Walters, Peter
%T A mixing property for non-singular actions
%B Bifurcation, théorie ergodique et applications - 22-26 juin 1981
%A Collectif
%S Astérisque
%D 1982
%P 163-183
%N 98-99
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1983__98-99__163_0/
%G en
%F AST_1983__98-99__163_0
Walters, Peter. A mixing property for non-singular actions, dans Bifurcation, théorie ergodique et applications - 22-26 juin 1981, Astérisque, no. 98-99 (1982), pp. 163-183. http://archive.numdam.org/item/AST_1983__98-99__163_0/

[1] Aaronson, J., Lin, R., and Weiss, B. : Mixing properties of Markov operators and ergodic transformations, and ergodicity of Cartesian products. Israel J. Mathematics, 33 (1979), 198-224. | DOI | MR | Zbl

[2] Effros, E. G. : Transformation groups and C * -algebras. Ann. Math. 81 (1965), 38-55. | DOI | MR | Zbl

[3] Furstenberg, H., and Weiss, B. : The finite multipliers of infinite ergodic transformations. In: The Structure of Attractors in Dynamical Systems, pp. 127-132, Springer Lecture Notes in Mathematics, Vol. 668: Springer 1978. | DOI | MR | Zbl

[4] Friedman, N. A. : Introduction to Ergodic Theory. Van Nostrand, 1970. | MR | Zbl

[5] Glimm, J. : Locally compact transformation groups. Trans. Amer. Math. Soc. 101 (1961), 124-138. | DOI | MR | Zbl

[6] Katznelson, Y. : Sigma - finite invariant measures for smooth mappings of the circle. Journal d'Analyse Math. 31 (1977), 1-18. | DOI | MR | Zbl

[7] Katznelson, Y., and Weiss, B. : The construction of quasi-invariant measures. Israel J. Math. 12 (1972), 1-4. | DOI | MR | Zbl

[8] Losert, V., and Schmidt, K. : A class of probability measures on groups arising from some problems in ergodic theory. In: Probability measures on groups, pp. 220-238, Springer Lecture Notes in Mathematics, Vol. 706. Springer 1979. | DOI | MR | Zbl

[9] Schmidt, K. : Mildly mixing actions of locally compact groups II. Preprint 1981. | Zbl

[10] Schmidt, K. and Walters, P. : Mildly mixing actions of locally compact groups I. Preprint 1981. | MR | Zbl

[11] Varadarajan, V. S. : Geometry of Quantum Theory II. Van Nostrand 1970. | MR | Zbl

[12] Walters, P. : Some invariant σ-algebras for measure preserving transformation. Trans. Amer. Math. Soc. 163 (1972) 357-368. | MR | Zbl

[13] Schmidt, K. : Infinite invariant measures on the circle. Istituto Nazionale di Alta Matematica Symposia Mathematica, XXI (1977), 37-43. | MR | Zbl