@incollection{AST_1984__116__190_0, author = {Reinhart, Bruce L.}, title = {Some remarks on the structure of the {Lie} algebra of formal vector fields}, booktitle = {Structure transverse des feuilletages}, series = {Ast\'erisque}, pages = {190--194}, publisher = {Soci\'et\'e math\'ematique de France}, number = {116}, year = {1984}, mrnumber = {755170}, zbl = {0572.17007}, language = {en}, url = {http://archive.numdam.org/item/AST_1984__116__190_0/} }
TY - CHAP AU - Reinhart, Bruce L. TI - Some remarks on the structure of the Lie algebra of formal vector fields BT - Structure transverse des feuilletages AU - Collectif T3 - Astérisque PY - 1984 SP - 190 EP - 194 IS - 116 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1984__116__190_0/ LA - en ID - AST_1984__116__190_0 ER -
%0 Book Section %A Reinhart, Bruce L. %T Some remarks on the structure of the Lie algebra of formal vector fields %B Structure transverse des feuilletages %A Collectif %S Astérisque %D 1984 %P 190-194 %N 116 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1984__116__190_0/ %G en %F AST_1984__116__190_0
Reinhart, Bruce L. Some remarks on the structure of the Lie algebra of formal vector fields, in Structure transverse des feuilletages, Astérisque, no. 116 (1984), pp. 190-194. http://archive.numdam.org/item/AST_1984__116__190_0/
1. Flows on homogeneous spaces : a new look, to appear. | MR | Zbl
and ,2. Kolmogorov automorphisms on homogeneous spaces, Amer. J. Math. 98(1976), 119-163. | DOI | MR | Zbl
,3. Spectrum of an affine transformation, Duke J. Math. 44(1977), 129-155. | DOI | MR | Zbl
,4. Cohomology of the Lie algebra of Hamiltonian formal vector fields, Functional Analysis and Applications 6(1972), 193-196. | DOI | Zbl
, , and ,5. The Mautner phenomenon for unitary representations. Pacific J. Math. 86(1980), 155-169. | DOI | MR | Zbl
,6. Natural vector bundles and natural differential operators, Amer. J. Math. 100(1978), 775-828. | DOI | MR | Zbl
,7. The classification of simple differential geometric objects (Russian), Dokl. Akad. Nauk S.S.S.R. 49(1949), 293-296. | MR | Zbl
,