The normal variations technique for studying the shape of capillary surfaces
Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983, Astérisque no. 118  (1984), p. 189-195
@incollection{AST_1984__118__189_0,
     author = {Korevaar, N.},
     title = {The normal variations technique for studying the shape of capillary surfaces},
     booktitle = {Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {118},
     year = {1984},
     pages = {189-195},
     zbl = {0609.76017},
     mrnumber = {761748},
     language = {en},
     url = {http://www.numdam.org/item/AST_1984__118__189_0}
}
Korevaar, N. The normal variations technique for studying the shape of capillary surfaces, in Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983, Astérisque, no. 118 (1984), pp. 189-195. http://www.numdam.org/item/AST_1984__118__189_0/

[1] E. Bombieri, E. De Giorgi, M. Miranda, Una maggiorazione a priori relativa alle ipersuperfici minimali nonparametriche, Arch. Rat. Mech. Anal. 32 (1969), 255-269. | Article | MR 248647 | Zbl 0184.32803

[2] R. Finn, New estimates for equations of minimal surface type, Arch. Rat. Mech. Anal. 14 (1963), 337-375. | Article | MR 157096 | Zbl 0133.04601

[3] C. Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Scuola Norm. Sup. Pisa 3 (1976), 157-175. | MR 602007 | Zbl 0338.49008

[4] N. Korevaar, The normal variations technique for studying the steepness of capillary surfaces, in preparation. | Zbl 0609.76017

[5] G. Lieberman, Gradient estimates for the capillary-type problem via the maximum principle, preliminary version. | Article | Zbl 0659.35043

[6] L. Simon, Interior gradient bounds for non-uniformly elliptic equations, Indiana U. Math. J. 25 #9 (1976), 821-855. | Article | MR 412605 | Zbl 0346.35016

[7] L. Simon and J. Spruck, Existence and regularity of a capillary surface with a prescribed contact angle. Arch. Rat. Mech. Anal. 61 (1976), 19-34. | Article | MR 487724 | Zbl 0361.35014

[8] J. Spruck, On the existence of a capillary surface with a prescribed angle of contact, Comm. Pure Appl. Math. 28 (1975), 189-200. | Article | MR 398278 | Zbl 0297.76018

[9] N. Trudinger, A new proof of the interior gradient bound for the minimal surface equation in n-dimensions, Proc. Nat. Acad. Sci. USA 69 (1972), 166-175. | Article | MR 296832 | Zbl 0231.53007

[10] N. N. Ural'Tceva, Solution to the capillary problem, Vestnik Leningrad Univ. 19 (1973), 54-64; (English translation: Vestnik Leningrad Univ. Math. 6 (1979), 363-375). | Zbl 0419.35040