Is there gravity-induced facetting of crystals
Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983, Astérisque no. 118  (1984), p. 243-253
@incollection{AST_1984__118__243_0,
     author = {Taylor, Jean E.},
     title = {Is there gravity-induced facetting of crystals},
     booktitle = {Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {118},
     year = {1984},
     pages = {243-253},
     mrnumber = {761755},
     language = {en},
     url = {http://www.numdam.org/item/AST_1984__118__243_0}
}
Taylor, Jean E. Is there gravity-induced facetting of crystals, in Variational methods for equilibrum problems of fluids - Trento, 20-25 juin 1983, Astérisque, no. 118 (1984), pp. 243-253. http://www.numdam.org/item/AST_1984__118__243_0/

[1] J. Avron, J. E. Taylor, And R. K. P. Zia, Equilibrium shapes of crystals in a gravitational field, J. Stat. Phys. 33 (1983), to appear. | MR 732374

[2] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969. | MR 257325 | Zbl 0176.00801 | Zbl 0874.49001

[3] R. Finn, Global size and shape estimates for symmetric sessile drops, J. Reine Angew. Math. 335 (1982), 9-36. | MR 667460 | Zbl 0494.76104

[4] P. S. Laplace, Sur l'action capillaire, Supplément au Livre X de Traité de mécanique céleste, Gauthier-Villars, Paris, 1806.

[5] J. E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), 568-588. | Article | MR 493671 | Zbl 0392.49022

[6] W. L. Winterbottom, Equilibrium shape of a small particle in contact with a foreign substrate, Acta Met. 15 (1967), 303-310. | Article