On the distribution of integers having no large prime factor
Journées arithmétiques de Besançon, Astérisque no. 147-148  (1987), p. 27-31
@incollection{AST_1987__147-148__27_0,
     author = {Balog, A.},
     title = {On the distribution of integers having no large prime factor},
     booktitle = {Journ\'ees arithm\'etiques de Besan\c con},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {147-148},
     year = {1987},
     pages = {27-31},
     zbl = {0617.10031},
     language = {en},
     url = {http://www.numdam.org/item/AST_1987__147-148__27_0}
}
Balog, A. On the distribution of integers having no large prime factor, in Journées arithmétiques de Besançon, Astérisque, no. 147-148 (1987), pp. 27-31. http://www.numdam.org/item/AST_1987__147-148__27_0/

[1] A. Balog and A. Sárközy, On sums of integers having small prime factors II, Studia Sci. Math. Hungar. 19 (1984), 81-88. | Zbl 0569.10026

[2] J. B. Friedlander and J. C. Lagarias, On the distribution in short intervals of integers having no large prime factor, to appear. | Zbl 0606.10033

[3] D. R. Heath-Brown and H. Iwaniec, On the difference between consecutive primes, Inventiones Math. 55 (1979), 49-69. | Article | Zbl 0424.10028

[4] M. N. Huxley, On the difference between consecutive primes, Inventiones Math. 15 (1972), 164-170. | Article | Zbl 0241.10026

[5] H. L. Montgomery, Topics in multiplicative number theory. Lecture notes Math. 227. Berlin-Heidelberg-New-York, Springer 1971. | Zbl 0216.03501

[6] E. C. Titchmarsh, The theory of Riemann zeta-function. Oxford. Clarendon Press 1951. | Zbl 0042.07901