@incollection{AST_1987__154-155__131_0, author = {Jun. Lawson, H.Blaine}, title = {La classification des $2$-sph\`eres minimales dans l'espace projectif complexe}, booktitle = {Th\'eorie des vari\'et\'es minimales et applications}, series = {Ast\'erisque}, pages = {131--149}, publisher = {Soci\'et\'e math\'ematique de France}, number = {154-155}, year = {1987}, mrnumber = {955063}, zbl = {0635.53038}, language = {fr}, url = {http://archive.numdam.org/item/AST_1987__154-155__131_0/} }
TY - CHAP AU - Jun. Lawson, H.Blaine TI - La classification des $2$-sphères minimales dans l'espace projectif complexe BT - Théorie des variétés minimales et applications AU - Collectif T3 - Astérisque PY - 1987 SP - 131 EP - 149 IS - 154-155 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1987__154-155__131_0/ LA - fr ID - AST_1987__154-155__131_0 ER -
%0 Book Section %A Jun. Lawson, H.Blaine %T La classification des $2$-sphères minimales dans l'espace projectif complexe %B Théorie des variétés minimales et applications %A Collectif %S Astérisque %D 1987 %P 131-149 %N 154-155 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1987__154-155__131_0/ %G fr %F AST_1987__154-155__131_0
Jun. Lawson, H.Blaine. La classification des $2$-sphères minimales dans l'espace projectif complexe, dans Théorie des variétés minimales et applications, Astérisque, no. 154-155 (1987), pp. 131-149. http://archive.numdam.org/item/AST_1987__154-155__131_0/
[1] Harmonic maps from to , in Harmonic maps Symposium, New- Orleans (1980), | Zbl
,Harmonic maps from to Lect. Notes in Math 949 Springer (1982), 48-55. | Zbl
,[2] Quelques applications de l'analyse complexe aux surfaces d'aire minima, in Topics in complex manifolds (Ed. H. Rossi), Les presses de l'Université de Montréal (1967), 59-81.
,[3] Minimal immersions of surfaces in euclidean spheres, J. Differential Geom. 1 (1967), 111-125. | DOI | MR | Zbl
,[4] On the volume decreasing property of a classe of real harmonic mappings, Amer. J. Math. 97 (1975), 133-147. | DOI | MR | Zbl
, ,[5] Minimal surface by moving frames, Amer. J. Math. 105 (1983), 59-83. | DOI | MR | Zbl
, ,[6] General classical solutions in the model, Nucl. Phy. B 174 (1980) 397-406. | DOI | MR
, ,[7] Properties of the general classical model, Phys. Letters 95 B (1980) 419-422. | MR
, ,[8] Regular solutions of the models and further generalization, CERN preprint. 1980.
, ,[9] The existence and construction of certain harmonic maps, Symp. Math. Ist. Naz. Alta Mat. Roma 26 (1982), 123-138. | MR | Zbl
, ,[10] Harmonic maps from surfaces to complex projective spaces, Adv. Math 49 (1983), 217-263. | DOI | MR | Zbl
, ,[11] Surfaces minimales et la construction de Calabi-Penrose, in Séminaire Bourbaki n°624, 1983/84, Astérisque 121-122, Soc. Math. France, 1985, pp.197-212. | EuDML | Numdam | MR | Zbl
,Surfaces minimales et la construction de Calabi-Penrose Soc. Math. France, 1985, pp.197-212. | EuDML | Numdam | MR | Zbl
,[12] The fundamental equations of a submersion, Mich. Math. J. 13 (1966), 459-469. | DOI | MR | Zbl
,[13] On minimal surfaces in a Kähler manifold of constant holomorphic sectional curvature, Trans. A.M.S. 290 (1985), 627-646. | MR | Zbl
,