@incollection{AST_1987__154-155__245_0, author = {Bourguignon, Jean-Pierre}, title = {Sph\`eres minimales d'apr\`es {J.} {Sacks} et {K.} {Uhlenbeck}}, booktitle = {Th\'eorie des vari\'et\'es minimales et applications}, series = {Ast\'erisque}, pages = {245--254}, publisher = {Soci\'et\'e math\'ematique de France}, number = {154-155}, year = {1987}, mrnumber = {955068}, zbl = {0635.53043}, language = {fr}, url = {http://archive.numdam.org/item/AST_1987__154-155__245_0/} }
TY - CHAP AU - Bourguignon, Jean-Pierre TI - Sphères minimales d'après J. Sacks et K. Uhlenbeck BT - Théorie des variétés minimales et applications AU - Collectif T3 - Astérisque PY - 1987 SP - 245 EP - 254 IS - 154-155 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1987__154-155__245_0/ LA - fr ID - AST_1987__154-155__245_0 ER -
%0 Book Section %A Bourguignon, Jean-Pierre %T Sphères minimales d'après J. Sacks et K. Uhlenbeck %B Théorie des variétés minimales et applications %A Collectif %S Astérisque %D 1987 %P 245-254 %N 154-155 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1987__154-155__245_0/ %G fr %F AST_1987__154-155__245_0
Bourguignon, Jean-Pierre. Sphères minimales d'après J. Sacks et K. Uhlenbeck, in Théorie des variétés minimales et applications, Astérisque, no. 154-155 (1987), pp. 245-254. http://archive.numdam.org/item/AST_1987__154-155__245_0/
[1] Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296. | MR | Zbl
,[2] Vers une théorie des points critiques à l'infini, in Séminaire Bony-Sjöstrand-Meyer 1985, Exposé n° VIII. | Numdam | MR | Zbl
, ,[3] A report on harmonic maps, Bull. London Math Soc. 10 (1978), 1-68. | DOI | MR | Zbl
, ,[4] Another report on harmonic maps, Bull. London Math Soc. (1987) | MR | Zbl
, ,[5] Harmonic mappings of Riemannian manifolds, Amer. J. Math 86 (1964) 109-160. | DOI | MR | Zbl
, ,[6] Restrictions on harmonic maps of surfaces, Topology 15 (1976), 263-266. | MR | Zbl
, ,[7] Ein Existenzbeweis für harmonische Abbildungen, die ein Dirichlet - problem lösen, mittels der Methode des Wärmeflusses, Manuscripta Math. 38 (1982), 129-130. | MR
,[8] Harmonie maps between surfaces, Lecture Notes in Maths 1062, Springer, Berlin-Heidelberg-New-York, 1984. | MR | Zbl
,[9] Applications harmoniques des surfaces riemanniennes, J. Differential Geom. 13 (1978), 51-87. | DOI | MR | Zbl
,[10] The concentration-compactness principle in the calculus of variations, The limit case, Part 2, Revista Mat. Iberamericana 1 (1985), 45-121. | DOI | EuDML | MR | Zbl
,[11] Multiple integrals in the calculus of variations, Grundl, der Math., Springer, Berlin (1966). | MR | Zbl
,[12] The existence of minimal immersions of -spheres, Ann. Math. 113 (1981), 1-24. | DOI | MR | Zbl
, ,[13] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), 479-495. | DOI | MR | Zbl
,[14] Existence of incompressible minimal surfaces and the topology of -dimensional manifolds with non-negative scalar curvature, Ann. Math. 110 (1979), 127-142. | DOI | MR | Zbl
, ,[15] A direct method for minimizing the Yang-Mills functional over -manifolds, Commun. Math. Phys. 86 (1982), 515-528. | DOI | MR | Zbl
,[16] On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), 558-581. | DOI | EuDML | MR | Zbl
,[17] Selfdual connections on non selfdual -manifolds, J. Differential Geom. 17 (1982), 139-170. | DOI | MR | Zbl
,[18] Removable singularities in Yang-Mills fields, Commun. Math. Phys. 83 (1982), 11-29. | DOI | MR | Zbl
,